Kazınmış asfalt kaplama (RAP) malzemelerinin filler oranının CBR performansına etkisi ve maliyet analizi

Kazınmış asfalt kaplama (RAP) malzemeleri çevre kirliğini azaltması, enerji ve maliyet tasarrufu sağlaması nedeniyle doğal agregaya (DA) alternatif sayılabilecek bir malzemedir. Pek çok ülkede, yol üstyapı tabakalarında belirli oranlarda RAP malzemesi kullanımına müsaade edilmektedir. Fakat RAP malzemelerinin mekanik özellikleri malzemenin üstyapının hangi tabakasından elde edildiğine, kazındığı yolun hizmet ömrü ve yapım özelliklerine, yolda kullanılan malzemelerin (bitüm ve agrega) özelliklerine ve kazı makinesinin özelliklerine bağlıdır. Bu çalışmada, iki farklı karayolunun bozulmuş aşınma tabakalarından özel kazıma makinesiyle elde edilen RAP malzemeleri (RAP1 ve RAP2), DA ile farklı oranlarda (%0, %15, %30, %45, %60, %100) karıştırılmıştır. Elde edilen karışımlar üzerinde bitüm oranı, elek analizi, modifiye proktor ve Kaliforniya taşıma oranı (CBR) gibi laboratuar testleri yapılarak karışımların bazı karakteristik özellikleri, %100 DA karışım değerleri referans alınarak incelenmiştir. Sonuçlara göre DA malzemesine alternatif olarak plentmiks temel (PMT) tip-1 tabakasında kullanılabilir maksimum RAP1 ve RAP2 oranları ülkemiz Karayolu Teknik Şartnamesi (KTŞ) kriterleri doğrultusunda belirlenmiştir. Ayrıca RAP malzemelerinin kullanılması durumunda DA malzemesine olan ihtiyacın azalmasının sağlayacağı malzeme maliyetlerindeki kar oranları da kapsamlı bir maliyet analizi yapılarak belirlenmiştir.

___

  • [1] Güngör AG, Orhan F, Kaşak S, Çalışkol A, Yönter G. “Kazılmış asfalt kaplamaların yeniden kullanılması”. Karayolu 1. Ulusal Kongresi, Ankara, Türkiye, 1-3 Nisan 2008.
  • [2] Potturi A, Puppala AJ, Hoyos LR. “Resilient Characteristics of Cement Treated Reclaimed Asphalt Pavement Aggregates”. Transportation Research Board Annual Meeting, National Research Council, National Academy of Science, Washington, DC, USA, 2007.
  • [3] Locander R. “Analysis of using reclaimed asphalt pavement (RAP) as a base course material”. Colorado Department of Transportation Final Report No: CDOT-2009-5, Denver, USA, 2009.
  • [4] Bleakley AM, Cosentino PJ. “Improving properties of reclaimed asphalt pavement for 484 Roadway base applications through blending and chemical stabilization”. Transportation Research Record: Journal of the Transportation Research Board, 486(2335), 20-28, 2013.
  • [5] Gray JE. “Characteristics of graded base course aggregates determined by triaxial tests”. National Crushed Stone Association Engineering Bulletin No. 12. National Crushed Stone Association, Washington, DC, 1962.
  • [6] McGarrah EJ. “Evaluation of Current Practices of Reclaimed Asphalt Pavement/Virgin Aggregate as Base Course Material”. Washington State Department of Transportation Final Report No: WA-RD 713.1, 2007.
  • [7] Yuan D, Nazarian S, Hoyos LR, Puppala AJ. “Cement Treated RAP Mixes for Roadway Bases”. Federal Highway Administration Final Report No: FHWA/TX-10/0-6084-1. Washington, D.C., 2010.
  • [8] Edil TB. “Specifications and Recommendations for Recycled Materials Used as Unbound Base Course”. Recycled Materials Source Center Final Report No: 68. University of Wisconsin-Madison, 2011.
  • [9] Karayolları Genel Müdürlüğü. “Karayolu Teknik Şartnamesi (KTŞ)”. Ankara, Türkiye, 2013.
  • [10] Gupta SC, Kang DH, Ranaivosoon A. “Hydraulic and mechanical properties of recycled materials”. Minnesota Department of Transportation Research Services Section Final Report No: 2009-32, St. Paul, 2009.
  • [11] Mulheron M, O’Mahony MM. “Properties and performance of recycled aggregates”. Highways and Transportation, 37(2), 35–37, 1990.
  • [12] Guthrie WS, Cooley D, Eggett DL. “Effects of reclaimed asphalt pavement on mechanical properties of base materials”. Transportation Research Record: Journal of the Transportation Research Board, 2005(1), 44-52, 2007.
  • [13] Wen H, Warner J, Edil T, Wang G. “Laboratory comparison of crushed aggregate and recycled pavement material with and without high carbon fly ash”. Geotechnical and Geological Engineering, 28(4), 405-411, 2010.
  • [14] Taha R, Ali G, Basma A, Al-Turk O. “Evaluation of reclaimed asphalt pavement aggregate in road bases and subbases”. Transportation Research Record: Journal of the Transportation Research Board, 1652(1), 264-269, 1999.
  • [15] Bennert T, Maher A. “The Development of a Performance Specification for Granular Base and Subbase Material”. Federal Highway Administration Final Report No: FHWA-NJ-2005-003, Washington, DC, 2005.
  • [16] Wu MQ. “Evaluation of High Percentage Recycled Asphalt Pavement as Base Course Materials”. MSc Thesis, Washington State University, Washington, DC, USA, 2011.
  • [17] Senior SA, Szoke SI, Rogers CA. “Ontario's experience with reclaimed materials for use in aggregates”. International Road Federation/Transportation Association of Canada Conference Proceedings. Calgary, Alberta, 6, 31-55, 1994.
  • [18] Garg N, Thompson MR. “Lincoln Avenue reclaimed asphalt pavement base project”. Transportation Research Record: Journal of Transportation Research Board, 1547, 89-95, 1996.
  • [19] Taha R. “Evaluation of cement kiln dust-stabilized reclaimed asphalt pavement aggregate systems in road bases”. Transportation Research Record: Journal of Transportation Research Board, 1819, 11-17, 2003.
  • [20] Ayan V. “Assessment of Recycled Aggregates for Use in Unbound Subbase of Highway Pavement”. PhD Thesis, Kingston University, Civil Engineering Department, London, England, 2011.
  • [21] Cosentino PJ, Kalajian EH, Bleakley AM, Diouf BS, Misilo TJ, Petersen AJ, Sajjadi AM. “Improving the Properties of Reclaimed Asphalt Pavement for Roadway Base Applications”. Florida Department of Transportation Final Report No: FL/DOT/BDK81 97702, 2012.
  • [22] Ooi PSK. “Application of Recycled Materials in Highway Projects”. Hawaii Department of Transportation Highways Division University of Hawaii Final Report No: HWY-L-2005-04, Manoa, 2010.
  • [23] Florida Department of Transportation (FDOT). “Standard Specifications for Road and Bridge Construction”. Florida, USA, 2013.
  • [24] Sullivan J. “Pavement Recycling Executive Summary and Report”. Federal Highway Administration Final Report No: FHWA-SA-95-060, Washington, DC, 1996.
  • [25] Rathje EM, Rauch AF, Folliard KJ, Trejo D, Little D, Viyanant C, Ogalla M, Esfeller M. “Recycled Asphalt Pavement and Crushed Concrete Backfill: Results From Initial Durability and Geotechnical Tests”. Federal Highway Administration Final Report No: FHWA/TX-02/4177-2, Washington, DC. 2012.
  • [26] Mokwa RL, Peebles, CS. “Evaluation of the engineering characteristics of RAP/Aggregate blends”. Federal Highway Administration Final Report No: FHWA/MT-05-008/8117-24, Washington, DC, 2005.
  • [27] Hoppe EJ, Lane DS, Fitch GM, Shetty S. “Feasibility of Reclaimed Asphalt Pavement (RAP) use as Road Base and Subbase Material”. Virginia Center for Transportation Innovation and Research Final Report No: VCTIR 15-R6, 2015.
  • [28] Chesner W, Collins R, MacKay M, Emery J. “User guidelines for waste and Byproduct Materials in Pavement Construction”. Federal Highway Administration Final Report No: FHWA-RD-97-148, McLean, Virginia, 1998.