Geri dönüştürülmüş polietilenin tehlikeli atık yakma tesisi uçucu küllerinin depolanabilirliği üzerine etkisi: Yeni bir kompozit malzemeye doğru

Atık nihai depolama alanları; tehlikeli atıklar için 1. sınıf depolama alanları, tehlikesiz atıklar için 2. sınıf depolama alanları ve inert atıklar için 3. sınıf depolama alanları olmak üzere 3 genel kategori altında toplanabilir. Bununla birlikte, tehlikeli atık yakma tesisi uçucu külleri (HWI-FA) 1. sınıf depolama alanlarına bile kabul edilmeyen bir tehlike düzeyine sahiptirler. Bu çalışmanın temel amacı; bu küllerin tehlike potansiyelini bir taşıyıcı malzeme kullanarak azaltmaktır. Bu amaçla seçilen taşıyıcı malzeme geri dönüştürülmüş polietilendir (r-PE). Bu seçimin temel gerekçesi r-PE'nin ucuz, inert, kolay bulunabilir ve işlenebilir bir malzeme oluşudur. Deneysel çalışmalarda 45 mikron altı ve 400 mikron altı olmak üzere iki farklı boyut dağılımında uçucu kül kullanılmıştır. Türkiye'nin ilk tehlikeli atık yakma tesisi olan İZAYDAŞ'dan elde edilen uçucu küllerin bu iki alt grubundan küller r-PE yapısına %15, 30 ve 45 gibi 3 farklı oranla ilave edilmiştir. Karışımların enjeksiyonu sonucu elde edilen kompozit örneklerinin (HWI-FA/r-PE) süzüntü, aşınma ve çekme dayanımı analizleri gerçekleştirilmiştir. Süzüntü analizlerinden elde edilen bulgulara göre, 45 mikron altındaki partiküller için tüm HWI-FA/r-PE kompozitleri 2. sınıf bir depolama alanı için uygun olarak tespit edilmiştir. Benzer biçimde, 400 mikron altındaki dağılım için %45 karışım oranı dışındaki kompozitler 1. sınıf bir depolama için uygun olarak tespit edilmiştir. 45 mikron altı için, külden %15 oranında içeren kompozitte aşınma dayanımı saf r-PE'ye göre artmış, öte yandan kül oranı arttıkça bu dayanım düşmüştür. 400 mikron altı için ise artan kül oranı, aşınma dayanımını düşürmüştür. Aşınma için elde edilen bu bulgular çekme dayanımları için de benzer sonuçlar vermiştir.

Effect of recycled polyethylene on storability of hazardous waste incinerator fly ashes: Towards a new composite material

Landfills can be classified into three general categories: Class1-type landfills for hazardous wastes, Class2-type landfills for non-hazardous wastes, and Class3-type landfills for inert wastes. Besides, hazard potential of hazardous waste incinerator fly ashes (HWI-FA) is high to be accepted for Class1-type landfills. The main aim of this study is to lower the hazard potential of HWI-FAs with the help of a matrix material. For this purpose recycled polyethylene (r-PE) was chosen as matrix material. Being cheap, inert, easy to find and ease of processing are main reasons of choosing r-PE. Two different fly ash sizes were used in the experimental studies, first group was under 45 µm, second group was under 400 µm. Different amounts (15, 30 and 45 wt.-%) of HWI-FA obtained from the first hazardous waste incinerator of Turkey, IZAYDAS, were added to the matrix material. Composite specimens were produced in an injection molder. Standard leaching, wear and tensile tests were applied to the specimens. According to the findings, for particle size under 45 mm all HWI-FA/r-PE mixtures found to be suitable for Class2-type landfills. Similarly HWI-FA with particle size under 400 mm was suitable for Class1-type landfills except wt.-45% mixing ratio. Addition of HWI-FA (-45 µm) to r-PE first increases wear resistance of the material but increased ash content causes a decrease in the wear resistance of the PE. The increased size of ash particulates (-400 µm) effects wear resistance of the composite negatively. Similar results were also obtained for tensile tests.

___

  • Reijnders L. "Disposal, uses and treatments of combustion ashes: a review". Resources, Conservation and Recycling, 43(3), 313-336, 2005.
  • Malik A, Thapliyal A. "Eco-friendly fly ash utilization: potential for land application". Critical Reviews in Environmental Science and Technology, 39(4), 333-366, 2009.
  • Zacco A, Borgese L, Gianoncelli A, Struis RP, Depero LE, Bontempi E. "Review of fly ash inertisation treatments and recycling". Environmental Chemistry Letters, 12(1), 153-175, 2014.
  • Yang C, Wang T, Liu P, Shi H, Xue D. "Preparation of well-defined blackberry-like polypyrole/fly ash composite microspheres and their electrical conductivity and magnetic properties". Current Opinion in Solid State and Materials Science, 13(5), 112-118, 2009.
  • Bankowski P, Zou L, Hodges R. "Using inorganic polymer to reduce leach rates of metals from brown coal fly ash". Minerals Engineering, 17(2), 159-166, 2004.
  • Li G, Wu X. "Influence of fly ash and its mean particle size on certain engineering properties of cement composite mortars". Cement and Concrete Research, 35(6), 1128-1134, 2005.
  • Yang YF, Gai GS, Cai ZF, Chen QR. "Surface modification of purified fly ash and application in polymer". Journal of Hazardous Materials, 133(1), 276-282, 2006.
  • Chaowasakoo T, Sombatsompop, N. "Mechanical and morphological properties of fly ash/epoxy composites using conventional thermal and microwave curing methods". Composites Science and Technology, 67(11), 2282-2291, 2007.
  • Ghosh A, Subbarao C. “Strength characteristics of class f fly ash modified with lime and gypsum”. Journal of Geotechnical and Geoenvironmental Engineering, 133(7), 757–766, 2007.
  • Wu HC, Sun P. "New building materials from fly ash-based lightweight inorganic polymer". Construction and Building Materials, 21(1), 211-217, 2007.
  • Alvarez-Ayuso E, Querol X, Plana F, Alastuey A, Moreno N, Izquierdo M, Font O, Moreno T, Dize S, Vazquez E, Barra M. "Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-) combustion fly ashes". Journal of Hazardous Materials, 154(1), 175-183, 2008.
  • Miyake M, Kimura Y, Ohashi T, Matsuda M. "Preparation of activated carbon–zeolite composite materials from coal fly ash". Microporous and Mesoporous Materials, 112(1), 170-177, 2008.
  • Anagnostopoulos IM, Stivanakis VE. "Utilization of lignite power generation residues for the production of lightweight aggregates". Journal of Hazardous Materials, 163(1), 329-336, 2009.
  • Das K, Ray D, Adhikary K, Bandyopadhyay NR, Mohanty AK, Misra M. "Development of recycled polypropylene matrix composites reinforced with fly ash". Journal of Reinforced Plastics and Composites, 29(4), 510-517, 2010.
  • Kockal NU, Ozturan T. "Effects of lightweight fly ash aggregate properties on the behavior of lightweight concretes". Journal of Hazardous Materials, 179(1), 954-965, 2010.
  • Nath DCD, Bandyopadhyay S, Boughton P, Yu A, Blackburn D, White C. "High‐Strength biodegradable poly (vinyl alcohol)/fly ash composite films". Journal of Applied Polymer Science, 117(1), 114-121, 2010.
  • Zhang P, Li Q, Zhang H. "Combined effect of polypropylene fiber and silica fume on mechanical properties of concrete composite containing fly ash". Journal of Reinforced Plastics and Composites, 30(16), 1349-1358, 2011.
  • Xie J, Wu S, Pang L, Lin J, Zhu Z. "Influence of surface treated fly ash with coupling agent on asphalt mixture moisture damage". Construction and Building Materials, 30, 340-346, 2012.
  • Acharya SK, Mishra SC. "Weathering behavior of fly-ash jute polymer composite". Journal of Reinforced Plastics and Composites, 26(12), 1201-1210, 2007.
  • Chang FY, Wey MY. "Comparison of the Characteristics of Bottom and Fly Ashes Generated from Various Incineration Processes". Journal of Hazardous Materials, 138, (3), 594-603, 2006.
  • Veli S, Kirli L, Alyüz B, Durmusoğlu E. "Characterization of bottom ash, fly ash, and filter cake produced from hazardous waste ıncineration". Polish Journal of Environmental Studies, 17(1), 139-145, 2008.
  • Fuoco R, Ceccarini A, Tassone P, Wei Y, Brongo A, Francesconi S. "Innovative stabilization/solidification processes of fly ash from an incinerator plant of urban solid waste". Microchemical Journal, 79(1), 29-35, 2005.
  • Al-Rawas AA, Wahid Hago A, Taha R, Al-Kharousi K. “Use of incinerator ash as a replacement for cement and sand in cement mortars”. Building and Environment, 40(9), 1261-1266, 2005.
  • Lin KL. “Feasibility study of using brick made from municipal solid waste incinerator fly ash slag”. Journal of Hazardous Materials, 137(3), 1810-1816, 2006.
  • Shi HS, Kan LL. "Characteristics of municipal solid wastes incineration (MSWI) fly ash–cement matrices and effect of mineral admixtures on composite system". Construction and Building Materials, 23(6), 2160-2166, 2009.
  • Bontempi E, Zacco A, Borgese L, Gianoncelli A, Ardesi R, Depero LE. "A new method for municipal solid waste incinerator (MSWI) fly ash inertization, based on colloidal silica". Journal of Environmental Monitoring, 12(11), 2093-2099, 2010.
  • Chen HJ, Wang SY, Tang CW. "Reuse of Incineration Fly Ashes and Reaction Ashes for Manufacturing Lightweight Aggregate". Construction and Building Materials, 24(1), 46-55, 2010.
  • Jin MT, Huang CJ, Chen L, Sun X, Wang LJ. "Immobilization of MSWI fly ash with geopolymers". Advanced Materials Research, 150, 1564-1569, 2011.
  • Wu K, Shi H, Guo X. "Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production". Waste Management, 31(9), 2001-2008, 2011.
  • Colangelo F, Cioffi R, Montagnaro F, Santoro L. "Soluble salt removal from MSWI fly ash and its stabilization for safer disposal and recovery as road basement material". Waste Management, 32(6), 1179-1185, 2012.
  • Besco S, Brisotto M, Gianoncelli A, Depero LE, Bontempi E, Lorenzetti A, Modesti M. "Processing and properties of polypropylene‐based composites containing inertized fly ash from municipal solid waste incineration". Journal of Applied Polymer Science, 130(6), 4157-4164, 2013.
  • Malviya R, Chaudhary R. "Factors affecting hazardous waste solidification/stabilization: a review". Journal of Hazardous Materials, 137(1), 267-276, 2006.
  • Atikler U, Basalp D, Tihminlioğlu F. "Mechanical and morphological properties of recycled high‐density polyethylene, filled with calcium carbonate and fly ash". Journal of Applied Polymer Science, 102(5), 4460-4467, 2006.
  • Ahmed SFU, Maalej M, Paramasivam P. "Flexural responses of hybrid steel–polyethylene fiber reinforced cement composites containing high volume fly ash". Construction and Building Materials, 21(5), 1088-1097, 2007.
  • Satapathy S, Nag A, Nando GB. "Thermoplastic elastomers from waste polyethylene and reclaim rubber blends and their composites with ash". Process Safety and Environmental Protection, 88(2), 131-141, 2010.
  • Deepthi MV, Sharma M, Sailaja RRN, Anantha P, Sampathkumaran P, Seetharamu S. "Mechanical and thermal characteristics of high density polyethylene–fly ash cenospheres composites". Materials and Design, 31(4), 2051-2060, 2010.
  • Khan MJ, Al-Juhani AA, Shawabkeh R, Ul-Hamid A, Hussein IA. "Chemical modification of waste oil fly ash for improved mechanical and thermal properties of low density polyethylene composites". Journal of Polymer Research, 18(6), 2275-2284, 2011a.
  • Khan MJ, Al‐Juhani AA, Ul‐Hamid A, Shawabkeh R, Hussein IA. "Effect of chemical modification of oil fly ash and compatibilization on the rheological and morphological properties of low‐density polyethylene composites". Journal of Applied Polymer Science, 122(4), 2486-2496, 2011b.
  • Yıldız T, Yıldız C. "Soma termik santrali uçucu kül ve polipropilen atıklarının yeni bir malzeme üretiminde değerlendirilmesi". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 163-169, 2011.
  • Bakoglu M, Karademir A, Ayberk S. “Partitioning characteristics of targeted heavy metals in IZAYDAS hazardous waste incinerator". Journal of Hazardous Materials, 99(1), 89-105, 2003.
  • Karademir A, Bakoglu M, Ayberk S. "PCDD/F removal efficiencies of electrostatic precipitator and wet scrubbers in IZAYDAS hazardous waste incinerator". Fresenius Environmental Bulletin, 12, 1228-1232, 2003.
  • Karademir A, Korucu MK, “Assessment of emissions and removal of pcdd/fs at start-up periods in a hazardous waste incinerator”. Journal of the Air and Waste Management Association, 63(7), 788-795, 2013.
  • Korucu MK, Karademir A. "An evaluation of PCDD/Fs mass flux from a hazardous waste incinerator: the need for a reasonable start-up procedure". Combustion Science and Technology, 187(3), 458-468, 2015.
  • Çevre ve Orman Bakanlığı. "Atıkların Düzenli Depolanmasına Dair Yönetmelik". Çevre ve Orman Bakanlığı Çevre Yönetimi Genel Müdürlüğü Atık Yönetimi Dairesi, Ankara, Türkiye, 27533, 2010.