Elektrikli araç yerleşik batarya şarj uygulamaları için yüksek verimli bir LLC rezonanslı DC-DC dönüştürücünün tasarım yaklaşımı

Bu çalışmada, elektrikli araç (EV) yerleşik batarya şarj uygulamaları için indüktör-indüktör-kapasitor (LLC) rezonanslı bir dönüştürücünün yüksek verime dayalı optimum tasarım metodu sunulmuştur. Tasarım metodunda, lead-acid batarya hücreleri ile kıyaslandığında, yüksek güç yoğunluğu, yüksek akım ve gerilim değerlerine sahip olmaları gibi avantajları doğrultusunda lithium-ion batarya hücreleri kullanılmıştır. Böylece, LLC rezonanslı dönüştürücü, lithium-ion batarya şarj karakteristiğine göre geniş bir çıkış gerilimi aralığını farklı yük değerleri için regüle edebilmelidir. Tasarım yönteminde, LLC rezonanslı dönüştürücünün temel çalışma prensibi tanımlanmıştır ve çalışma bölgeleri yüksek verim açısından tartışılmıştır. LLC rezonanslı dönüştürücü, geniş bir aralıkta çıkış geriliminin regülasyonunu sağlayabilmesi için çalışma bölgeleri incelenmiştir. Yüksek verimli optimum tasarım yaklaşımına ulaşmak için çalışma durumlarına ait verim hesaplamaları Saber simülasyonu yardımı ile çıkarılmıştır. En iyi verim değerleri, rezonans frekansının hem altı hem üstü çalışma durumu için belirlenmiştir. Son olarak tasarlanan LLC rezonanslı dönüştürücünün yumuşak anahtarlamalı çalışması geniş bir gerilim ve yük aralığı için Saber simülasyonu ile doğrulanmıştır.

High efficiency design approach of a LLC resonant converter for on-board electrical vehicle battery charge applications

In this study, an optimal design procedure of inductor-inductor-capacitor (LLC) resonant converter for on-board electrical vehicle (EV) battery charge applications based on high efficiency is proposed. In the design procedure, lithium-ion battery cells are used due to their high power density, higher voltage and current rates compared to a lead-acid battery cells. Thus, LLC resonant converter should be regulated the output voltage in a wide voltage range with different load conditions according to typical charging profile of lithium-ion battery. For the design procedure, basic operation characteristics of LLC resonant converter is defined and operation regions are discussed in terms of high efficiency. The operation regions of LLC resonant converter are discussed to regulate wide output voltage range. In order to reach high efficiency optimal design, efficiency calculations based on Saber simulation are extracted for discussed operation regions. The best efficiency values are obtained for the operation of above-below resonance. Finally, soft switching operation of the LLC resonant converter is validated by Saber simulation for wide output voltage range and with changing load current.

___

  • Whitaker B, Barkley, A, Cole Z, Passmore B, Martin D, McNutt TY, Lostetter AB, Lee JS, Shiozaki K. “A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices”. IEEE Trasactions on Power Electronics, 29(5), 2606-2617, 2014.
  • Yilmaz M, Krein PT. “Review of battery charger topologies, charging power levels and infrastructure for plug-in electric and hybrid vehicles”. IEEE Transactions on Power Electronics, 28(5), 2151-2169, 2013.
  • Grenier M, Aghdam MH, Thiringer T. “Design of on-board charger for plug-in hybrid electric vehicle”.5. IET International Conference on Power Electronics, Machine and Drives, Brighton, UK, 19-21 April 2010.
  • Haghbin S, Khan K, Lundmark S, Alak¨ula M, Carlson O, Leksell M, Wallmark O. “Integrated chargers for EV’s and PHEV’s: Examples and new solutions”. XIX International Conference on Electrical Machines, Rome, Italy, 6-8 September 2010.
  • Emadi A, Lee YJ, Rajashekara K. “Power electronics and motor drives in electric, hybrid electric and plug-in hybrid electric vehicles”. IEEE Transaction on Industrial Electronics, 55(6), 2237-2245, 2008.
  • Emadi A, Williamson SS, Khaligh A. “Power electronics intensive solutions for advanced electric, hybrid electric and fuel cell vehicular power systems”. IEEE Transactions on Power Electronics, 21(3), 567-577, 2006.
  • Gautam DS, Musavi F, Edington M, Eberle W, Dunford WG. “An automotive onboard 3.3-kW battery charger for PHEV application”. IEEE Transsctions on Vehicular Technology, 61(8), 3466-3474, 2012.
  • Chen M, Rinc´on-Mora GA. “Accurate, compact and power-efficient li-ion battery charger circuit”. IEEE Transactions on Circuits and Systems-II: Express Briefs, 53(11), 1180-1184, 2006.
  • Dearborn S. “Charging li-ion batteries for maximum run times”. Power Electronics Technology, 31(4), 40-49, 2005.
  • Musavi F, Craciun M, Gautam DS, Eberle W, Dunford WG. “An LLC resonant DC-DC converter for wide output voltage range battery charging applications”. IEEE Transactions on Power Electronics, 28(12), 5437-5445, 2013.
  • Sun W, Wu H, Hu H, Xing Y. “Resonant tank design considerations and implementation of a LLC resonant converter with a wide battery voltage range”. Journal of Power Electronics, 15(6), 1446-1455, 2015.
  • Deng J, Li S, Hu S, Mi CC, Ma R. “Design methodology of LLC resonant converters for electric vehicle battery chargers”. IEEE Transactions on Vehicular Technology, 63(4), 1581-1592, 2014.
  • Fang Z, Cai T, Duan S, Chen C. “Optimal design methodology for LLC resonant converter in battery charging applications based on time-weighted average efficiency”. IEEE Transactions on Power Electronics, 30(10), 5469-5483, 2015.
  • Kim JW, Kim DY, Kim CE, Moon GW. “A simple switching control technique for improving light load efficiency in a phase-shifted full-bridge converter with a server power system”. IEEE Transactions on Power Electronics, 29(4), 1562-1566, 2014.
  • Kim DY, Kim CE, and Moon GW. “Variable delay time method in the phase-shifted full-bridge converter for reduced power consumption under light load conditions”. IEEE Transactions on Power Electronics, 28(11), 5120-5127, 2013.
  • Steigerwald LR. “A comparison of half-bridge resonant converter topologies”. IEEE Transactions on Power Electronics, 3(2), 174-182, 1988.
  • Lu B, Liu W, Liang Y, Lee FC, Van Wyk JD. “Optimal design methodology for LLC resonant converter”. Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition APEC '06, Blacksburg, USA, 19-23 March 2006.
  • Fang Y, Xu D, Zhang Y, Gao F, Zhu L. “Design of high power density LLC resonant converter with extra wide input range”. Twenty-Second Annual IEE Applied Power Electronics Conference, Anaheim, USA, 25 February-1 March 2007.
  • Huang D, Gilham D, Feng W, Kong P, Fu D, Lee FC. “High power density high efficiency DC-DC converter”. Energy Conversion Congress and Exposition (ECCE), Phoenix, USA, 17-22 September 2011.
  • Biela J, Badstuebner U, and Kolar JW. “Design of a 5-kW, 1-U, 10-kW/dm3 resonant DC-DC converter for telecom applications”. IEEE Transactions on Power Electronics, 24(7), 1701-1710, 2009.
  • Dow YS, Son HI, Lee HD. “A study on half bridge LLC resonant converter for battery charger on board”. 8th International Conference on Power Electronics-ECCE Asia, Jeju, Island, 30 May-3 June 2011.
  • Dow YS, Kim HH, Kwon YI, Kim BY, Kim JC. “A study of 6.6 kW on board charger for electric vehicle”. EVS28 International Electric Vehicle Symposium and Exhibition, Kintex, Korea, 3-6 May 2015.
  • Fang X, Hu H, Shen ZJ, Batarseh I. “Operation mode analysis and peak gain approximation of the LLC resonant converter”. IEEE Transactions on Power Electronics, 27(4), 1985-1995, 2012.
  • Lazar JF and Martinelli R. “Steady-State analysis of the LLC series resonant converter”. 16th Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, USA, 4-8 March 2001.
  • Yu R, Ho GKY, Pong BMH, Ling BWK, Lam J. “Computer aided design and optimization of high efficiency LLC series resonant converter”. IEEE Transactions on Power Electronics, 27(7), 3243-3256, 2012.
  • Gu Y, Lu Z, Hang L, Qian Z, Huang G. “Three-Level LLC series resonant DC/DC converter”. IEEE Transactions on Power Electronics, 20(4), 781-789, 2005.