TOPSIS ve GİA Çok Kriterli Karar Verme Yöntemleri İle Lastik Seçimi

Güvenli sürüş için, araçlarda kullanılan lastikler etkin bir şekilde değerlendirilmelidir. Kullanıcılar genel olarak satın alım süreçlerinde fiyat gibi tek bir kritere bağlı kalmayıp, birden çok kriteri gözönüne almaktadır. Bu bakımdan lastik seçimi de, müşterilerin yola tutunma, dayanıklılık, gürültü, yakıt tüketimi gibi bir çok kriteri göz önüne almaları gereken karmaşık bir süreçtir. Bu nedenden dolayı, lastiklerin seçimi bir Çok Kriterli Karar Verme (MCDM) problemi olarak modellenebilir. Birden çok kriter ve alternatif barındıran bu tür problemler, Çok Kriterli Karar Verme yöntemleri ile kolaylıkla çözümlenmektedir. Bu amaçla lastik seçiminde öne çıkan temel kriterler ıslak/kuru zemin performansı, gürültü, aşınma ve yakıt tüketimi olarak belirlenmiştir. Bu çalışmada, ADAC'ın (Avrupa'nın en büyük otomobil kulübü) test verileri Çok Kriterli Karar problemini çözmek noktasında girdi olarak kullanılmıştır. ADAC’ın oluşturduğu temel ölçek yardmıyla alternatifler derecelendirilmiştir. GİA (Gri İlişkisel Analiz) ve TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) yöntemleri sınıflandırma/derecelendirme problemlerinde yaygın olarak kullanılmaktadır. Bundan dolayı, 5 kriter ve 16 alternatif barındıran karar problemi GİA ve TOPSIS yöntemleri ile çözümlenmiştir. Analiz sonucunda ortaya çıkan bulgular, ADAC test sonuçlarıyla karşılaştırılmış ve tüm sıralama sonuçları yorumlanmıştır.

Tire Selection with TOPSIS and GRA Methods in Multi Criteria Decision Making

For safe driving, the tires used in vehicles must be assessed effectively. In general, users do not depend on a single criterion such as price in the buying process, but consider more than one criterion. In this regard, the choice of tires is also a complicated process for customers to consider many criteria such as handling, durability, noise, fuel consumption. Because of this, the choice of tires can be modeled as a Multi-Criteria Decision Making (MCDM) problem. Such problems with multiple criteria and alternatives are easily resolved with Multi Criteria Decision Making methods. For this purpose, the main criteria for tire selection are wet / dry road performance, noise, wear and fuel consumption. In this study, the test data of ADAC (Europe's largest automobile club) was used as input to solve the Multi-Criteria Decision problem. Alternatives are ranked with the help of the basic scale created by ADAC. GRA (Gray Relational Analysis) and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) methods are widely used in classification / ranking problems. Therefore, the decision problem of 5 criteria and 16 alternatives is solved by GIA and TOPSIS methods. Findings resulting from the analysis were compared with the ADAC test results and all ranking results were interpreted.

___

  • ADAC Automotive Engineering Report. (03/2016).
  • Behzadian, M., Otaghsara, S. K., Yazdani. M. & Ignatius, J. (2012). A State-Of The-Art Survey Of TOPSIS Applications. Expert Systems with Applications, Vol 39, Pp. 13051-13069.
  • Chan, J. W. K. & Tong, T. K. L., (2007). Multi- Criteria Material Selection and End-Of-Life Product Strategy: Grey Relational Analysis Approach. Materials And Design, Vol 28, Pp. 1539-1546.
  • Chang, C. H., Lin, J. J., Lin, J. H., & Chiang, M. C. (2010). Domestic Open-End Equity Mutual Fund Performance Evaluation Using Extended TOPSIS Method With Different Distance Approaches. Expert Systems With Applications, Vol 37, Pp. 4642–4649.
  • Chang, S. H., Hwang, J. R. & Doong, J. L. (2000). Optimization Of The Injection Molding Process Of Short Glass Fiber Reinforced Polycarbonate Composites Using Grey Relational Analysis. Journal of Materials Processing Technology, Vol 97, Pp. 186-193.
  • Chang, T. C. & Lin, S. J. (1996). Grey Relation Analysis of Carbon Dioxide Emissions From Industrial Production and Energy Uses In Taiwan. Journal Of Environmental Management, Vol 56, Pp. 247-257.
  • Chen, C. T. (2000). Extensions of The TOPSIS For Group Decision-Making Under Fuzzy Environment. Fuzzy Sets And Systems, Vol 114, Pp. 1–9.
  • Chen, M. F., & Tzeng, G. H. (2004). Combining Grey Relation And TOPSIS Concepts For Selecting An Expatriate Host Country. Mathematical And Computer Modeling, Vol 40, Pp. 1473–1490.
  • Dagdeviren, M. (2010). A Hybrid Multi-Criteria Decision-Making Model For Personnel Selection In Manufacturing Systems. Journal Of Intelligent Manufacturing, Vol 21, Pp. 451–460.
  • Dai, J., Qi, J., Chi, J., Chen, S., Yang, J., Ju, L., Et Al. (2010). Integrated Water Resource Security Evaluation Of Beijing Based On GRA And TOPSIS. Frontiers Of Earth Science In China, Vol 4(3), Pp. 357–362.
  • Deng, H., Yeh, C. H. & Willis R. J. (2000). Inter- Company Comparison Using Modified TOPSIS With Objective Weights. Computers & Operations Research, Vol 27, Pp. 963-973.
  • Fan, Z. P., & Feng, B. (2009). A Multiple Attributes Decision Making Method Using Individual And Collaborative Attribute Data In A Fuzzy Environment. Information Sciences, Vol 179, Pp. 3603–3618.
  • Feng, C. M., & Wang, R. T. (2000). Performance Evaluation For Airlines Including The Consideration Of Financial Ratios. Journal Of Air Transport Management, Vol 6, Pp. 133–142.
  • Freedonia. (2015). World Tires. Industry Study No: 3357.
  • Fu, C., Zheng, J., Zhao, J. & Xu, W. (2001). Application Of Grey Relational Analysis For Corrosion Failure Of Oil Tubes. Corrosion Sciences, Vol 43, Pp. 881- 889.
  • Hwang, C. L., & Yoon, K. P. (1981). Multiple Attribute Decision Making: Methods And Applications, New York: Springer- Verlag.
  • Hwang, L. C., Lai, Y. J. & Liu. T. Y. (1993). A New Approach For Multiple Objective Decision Making. Computers & Operations Research, Vol 20, Pp. 889-899.
  • Jahanshahloo, G. R., Lotfi, F. H., & Izadikhah, M. (2006). An Algorithmic Method To Extend TOPSIS For Decision-Making Problems With Interval Data. Applied Mathematics And Computation, Vol 175, Pp. 1375–1384.
  • Kuo, Y., Yang, T. & Huang, G. W. (2008). The Use Of Grey Relational Analysis In Solving Multiple Attribute Decision-Making Problems. Computers & Industrial Engineering, Vol 55, Pp. 80-93.
  • Lai, Y. J., Liu, T. Y. & Hwang, L. C. (1994). TOPSIS For MCDM. European Journal Of Operational Research, Vol 76, Pp. 486-500.
  • Li, X., Wang, K., Lıu, L., Xın, J., Yang, H. & Gao, C. (2011). Application Of The Entropy Weight and TOPSIS Method In Safety Evaluation Of Coal Mines. Procedia Engineering, Vol 26, Pp. 2085-2091.
  • Liang, R. H. (1999). Application Of Grey Relation Analysis To Hydroelectric Generation Scheduling. Electrical Power And Energy Systems, Vol 21, Pp. 357-364.
  • Opricovic, S & Tzeng, G. H. (2004). Compromise Solution By Mcdm Methods: A Comparative Analysis Of Vikor And TOPSIS. European Journal Of Operational Research, Vol 156, Pp. 445- 455.
  • Ozcan, T., Celebi, N., & Esnaf, S. (2011). Comparative Analysis Of Multi-Criteria Decision Making Methodologies And Implementation Of A Warehouse Location Selection Problem. Expert Systems With Applications, Vol 38, Pp. 9773–9779.
  • Sun, C. C. (2010). A Performance Evaluation Model by Integrating Fuzzy AHP And Fuzzy TOPSIS Methods. Expert Systems With Applications, Vol 37, Pp. 7745–7754.
  • Triantaphyllou, E. & Lin, C. T. (1996). Development And Evaluation Of Five Fuzzy Multi Attribute Decision –Making Methods. International Journal Of Approximate Reasoning, Vol 14, Pp. 281-310.
  • Tsaur, S. H., Chang, T. Y., & Yen, C. H. (2002). The Evaluation Of Airline Service Quality By Fuzzy MCDM. Tourism Management, Vol 23, Pp. 107–115.
  • Wu, H. H. (2002). A Comparative Study Of Using Grey Relational Analysis In Multiple Attribute Decision Making Problems. Quality Engineering, Vol 15, Pp. 209-217.
  • Yan, G., Ling, Z., & Dequn, Z. (2011). Performance Evaluation Of Coal Enterprises Energy Conservation and Reduction Of Pollutant Emissions Base On GTA–TOPSIS. Energy Procedia, Vol 5, Pp. 535–539.
  • Yousefi, A. & Vencheh, A. H. (2010). An Integrated Group Decision Making Model and Its Evaluation By DEA For Automobile Industry. Expert Systems With Applications, Vol 37, Pp. 8543-8556.