Fen Bilgisi ve Sosyal Bilgiler Öğretmen Adaylarının Mevsimler Konusundaki Bilgi Düzeylerinin Paralel Karma Yöntem ile Belirlenmesi

Bu çalışmada fen bilgisi ve sosyal bilgiler öğretmen adaylarının mevsimler konusundaki alan bilgilerinin paralel karma yöntem ile belirlenmesi ve karşılaştırılması amaçlanmıştır. Çalışma Türkiye’nin Karadeniz Bölgesi’ndeki bir üniversitede öğrenim gören fen bilgisi öğretmenliğinden 135, sosyal bilgiler öğretmenliğinden 105 olmak üzere toplam 240 katılımcı ile yapılmıştır. Araştırmada paralel karma desen kullanılmıştır. Nicel veriler araştırmacılar tarafından geliştirilen13 sorudan oluşan mevsimler başarı testinden, nitel veriler ise 5 açık uçlu sorudan elde edilmiştir. Nicel ve nitel veriler birlikte alınmış, ayrı ayrı analiz edilmiş, analiz sonuçları önce ayrı ayrı sonra birlikte yorumlanmıştır. Veri analizi sonucu öğrencilerin mevsimler başarı testinden aldığı puanların ortalaması 7.50 iken, nitel veri aracındaki elde edilen verilerin analizinden doğru açıklamaların frekansının oldukça düşük olduğu tespit edilmiştir. Öğrencilerin gerçek bilgilerinin ortaya çıkarılmasında çoktan seçmeli soruların yeterli olmadığı; fen bilgisi öğretmen adaylarının açık uçlu sorularda, sosyal bilgiler öğretmen adaylarının ise başarı testinde, fen bilgisi öğretmen adaylarının mevsimlerin nedenleri, sosyal bilgiler öğretmen adaylarının ise sonuçları ile ilgili sorularda daha başarılı olduğu sonucuna ulaşılmıştır.

Determination of Field Information about Seasons of Science and Social Studies Teacher Candidates by Parallel Mixed

In this study, it is aimed to determine and compare the field information of science and social studies teacher candidates on the subject of seasons with parallel mixed method. The study was conducted with 240 participants studying at a university in the Black Sea region of Turkey. For quantitative data, a seasons success test consisting of 13 questions was developed by the researchers and the KR-20 reliability coefficient of this test was 0.53. Qualitative data consist of 5 open ended questions. The quantitative and qualitative data were taken together, analyzed separately, and the analysis results were interpreted separately afterwards. it was found that the frequency of the correct explanations is quite low compared to the analysis of the data obtained from the qualitative data, while the average of the scores obtained by the students from the seasons success test was 7.50. Multiple choice questions are not enough to reveal the true knowledge of the students; In the questions about science teachers 'candidates' reasons for the formation of open-ended questions and seasons; social science teacher candidates were more successful in the test of success and in the results of the seasons.

___

  • Alkış, S. (2006). İlköğretim sekizinci sınıf öğrencilerinin mevsimlerin oluşumuyla ilgili fikirlerinin incelenmesi. Marmara Coğrafya Dergisi, 14, 107-120.
  • Atwood, R. K. ve Atwood, V. A. (1996). Preservice elementary teachers' conceptions of the causes of seasons. Journal of Research in Science Teaching, 33(5), 553-563.
  • Atwood, R. K. ve Atwood, V. A. (1997). Effects of ınstruction on preservice elementary teachers’ conceptions of the causes of night and day and the seasons. Journal of Science Teacher Education, 8(1),1-13.
  • Baloğlu, U. N. (2005). İlköğretim 6. sınıf öğrencilerinin dünya ve evren konusu ile ilgili kavram yanılgıları. Gazi Eğitim Fakültesi Dergisi, 25,1,229-246.
  • Baxter, J. (1989). Children’s understanding of familiar astronomical events. International Journal of Science Education, 11(5), 502-513. http://dx.doi.org/10.1080/0950069890110503
  • Bostan, A. (2008). Farklı yaş grubu öğrencilerinin astronominin bazı temel kavramlarına ilişkin düşünceleri,(Yüksek Lisans Tezi). Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Balıkesir.
  • Brunsell, E. ve Marcks, J. (2005). Identify a baseline for teachers’ astronomy content knowledge. Astronomy Education Review, 3 (2), 38-46.
  • Carr, M. (1984). Model confusion in chemistry. Research in Science Education,14(1), 97-103.
  • Chiu, M. H. ve Wong, S. C. (1995). Ninth graders’ mental models and processes of generating inferences of four seasons. Chinese Journal of Science Education, 3(1), 23-68
  • Creswell, J. W. ve Plano Clark, V. L. (2011). Choosing a mixed methods design. Designing and Conducting Mixed Methods Research, 53-106.
  • Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications
  • Dove, J. (2002). Does the man in the moon ever sleep? an analysis of students answers about simple astronomical events: a case study, International Journal of Science Education, 24(8), 823-834.
  • Duit, R. ve Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671-688.
  • Dunlop, J. (2000). How children observe the universe. Publications of the Astronomical Society of Australia, 17(2), 194-206.
  • Edelson, D. C., Gordin, D. N. ve Pea, R. D. (1999). Addressing the challenges of inquiry-based learning through technology and curriculum design. Journal of the learning sciences, 8(3-4), 391-450.
  • Emrahoğlu, N. ve Öztürk, A. (2009). Fen bilgisi öğretmen adaylarının astronomi kavramlarını anlama seviyelerinin ve kavram yanılgılarının incelenmesi üzerine boylamsal bir araştırma. Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 18(1), 165-180.
  • Frede, V. (2008). The seasons explained by refutational modeling activities. Astronomy Education Review, 1(7), 44-56.
  • Garnett, P. J. ve Treagust, D. F. (1992). Conceptual difficulties experienced by senior high school students of electrochemistry: Electrochemical (galvanic) and electrolytic cells. Journal of Research in Science Teaching, 29(10), 1079-1099.
  • Gilbert, J. K., Boulter, C. ve Rutherford, M. (1998). Models in explanations, Part 1: Horses for courses?. International Journal of Science Education, 20(1), 83-97.
  • Güneş, G. (2010). Öğretmen adaylarının temel astronomi konularında bilgi seviyeleri ile bilimin doğası ve astronomi öz yeterlilikleri arasındaki ilişkinin incelenmesi (Yüksek Lisans Tezi). Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Balıkesir.
  • Henriques, L. (2002). Children's ideas about weather: A review of the literature. School Science and Mathematics, 102(5), 202-215.
  • Johnson, R. B. ve Onwuegbuzie, A. J. (2004). Mixed methods research: A research paradigm whose time has come. Educational Researcher, 33 (7), 14-26.
  • Kalkan, H. ve Kıroğlu, K. (2007). Science and nonscience students’Ideas about basic astronomy concepts in preservice training for elementary school teachers, Astronomy Education Review, 6(1), 15-24.
  • Kehoe, J. (1995). Basic item analysis for multiple-choice tests. Practical Assessment, Research & Evaluation, 4(10), 1-3.
  • Kılıc, K., Sungur, S., Çakıroğlu, J., ve Tekkaya, C., (2005). Ninth grade students' understanding of the nature of scientific knowledge. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 28, 127-133.
  • Kikas, E. (1998). The impact of teaching on students' definitions and explanations of astronomical phenomena. Learning and Instruc-tion, 8(5), 439-454. Doi:0.1016/S0959-4752(98)00004-8
  • Kurnaz, M.A. ve Değirmenci, A. (2011). Temel astronomi kavramlarına ilişkin öğrenci algılamalarının sınıf seviyelerine göre karşılaştırması. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi,11(22), 91-112.
  • Kurnaz, M. A. ve Değirmenci, A. (2012). Mental models of 7th grade students on sun, earth and moon. Elementary Education Online. 11( 1), 137-150.
  • Küçüköz, H., (2007). Prospectives science teachers’ conceptions about astronomical subjects, Science Education International, 18(2), 113-130.
  • Küçüközer, H, Bostan, A. ve Işıldak, R. S. (2010). İlköğretim matematik öğretmeni adaylarının bazı astronomi kavramlarına ilişkin fikirlerine öğretimin etkileri, Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 29(1), 105-124.
  • Leech, N. L. ve Onwuegbuzie, A. J. (2009). A typology of mixed methods research designs. Quality and Quantity, 43, 265–275.
  • Lelliott, A. ve Rollnick, M. (2010). Big ideas: A review of astronomy education research 1974–2008. International Journal of Science Education, 32(13), 1771-1799.
  • National Research Council. (2012). Framework for K-12 science education. Washington, DC: National Academy Press.
  • Ojala, J. 1992. The third planet. International Journal of Science Education 14 (2), 191–200. Doi :10.1080/0950069920140207.
  • Ojala, J. 1997. Lost in space? the concepts of planetary phenomena held by trainee primary school teachers. International Research in Geographical and Environmental Education 6 (3), 183–203.
  • Onwuegbuzie, A. J. ve Collins, K. M. T. (2007). A typology of mixed methods sampling designs in social science research. The Qualitative Report, 12 (2), 281-316.
  • Rollins, M. M., Denton J. J. ve Janke D. L., 1983. Attainment of Selected Earth Science Concepts by Texas High School Seniors. Journal of Educational Research 7, 81- 88.
  • Sadler, P. M. (1992). The initial knowledge state of high school astronomy students (Doctoral dissertation, Harvard Graduate School of Education).
  • Schoon, K. J. (1992). Students' alternative conceptions of earth and space. Journal of Geological Education, 40(3), 209-214.
  • Sharp, J. G. (1996). Children's astronomical beliefs: a preliminary study of Year 6 children in south‐west England. International Journal of Science Education, 18(6), 685-712.
  • Sneider, C., Bar, V. ve Kavanagh, C. (2011). Learning about Seasons: A Guide for Teachers and Curriculum Developers. Astronomy Education Review, 10(1).
  • Trumper, R. (2000). University students’ conceptions of basic astrono-my concepts, Physics Education, 35(1), 9-15.
  • Trumper, R. (2001a). A Cross-age study of senior high school students’ conceptions of basic astronomy concepts, Research in Science &Technological Education, 19, 1.
  • Trumper, R. (2001b). A cross-age study of senior high school students’ conceptions of basic astronomy concepts. Research in Science and Technological Education, 19(1), 97-109. http://dx.doi.org/10.1080/02635140120046259
  • Trumper, R. (2003). The need for change in elementary school teacher training—a cross-college age study of future teachers’ conceptions of basic astronomy concepts. Teaching and Teacher Education, 19(3), 309-323.
  • Trumper, R. (2006). Teaching future teachers basic astronomy concepts- seasonal changes-at a time of reform in science education, Journal of Research in Science Teaching, 43(9), 879-906.
  • Tsai, C. C. ve Chang, C. Y. (2005). Lasting effects of instruction guided by the conflict map: Experimental study of learning about the causes of the seasons. Journal of research in science teaching, 42(10), 1089-1111.
  • Türk, C., ve Kalkan, H. (2017). Teaching seasons with hands-on models: model transformation. Research in Science & Technological Education, 1-29.
  • Türk, C., Kalkan,H., Kıroğlu, K. ve Ocak Iskeleli, N. (2016). Elementary school students' mental models about formation of seasons: A cross sectional study. Journal of Education and Learning, 5(1), 7-30.
  • Türk, C. ve Kalkan, H. (2015). The effect of planetariums on teaching specific astronomy concepts. Journal of Science Education and Technology, 24 (1), 1-15. http://dx.doi.org/10.1007/s10956-014-9516-6
  • Türk, C. (2010). İlköğretim Temel Astronomi Kavramlarının Öğretimi. On-dokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü (Yayımlanmamış Yüksek Lisans Tezi), Samsun.
  • Wai, J., Lubinski, D. ve Benbow, C. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817-835. Doi: 10.1037/a0016127
  • Zeilik, M., Schau, C. ve Mattern, N. (1998). Misconceptions and their change in university-level astronomy courses. The Physics Teacher, 36(2), 104-107.