Model-Tabanlı Öğrenme Ortamının Kimya Öğretmen Adaylarının Maddenin Tanecikli Yapısı Kavramını ve Bilimsel Modellerin Doğasını Anlamaları Üzerine Etkisinin İncelenmesi

Bu çalışma model-tabanlı öğrenme ortamının kimya öğretmen adaylarının maddenin tanecikli yapısı (MTY) kavramını ve bilimsel modellerin doğasını anlamaları üzerine etkisini incelemiştir. Ayrıca, öntestte MTY kavramını anlama düzeyleri bakımından farklılaşan kimya öğretmen adaylarının, sontestte MTY kavramını ve bilimsel modellerin doğasını anlamalarını araştırmıştır. Çalışmada karma araştırma metodu kullanılmış olup, yarı deneysel öntest-sontest karşılaştırmalı grup deseni olarak tasarlanmıştır. Veriler açık uçlu sorulardan oluşan tanı ölçeği ve likert-tip ölçek kullanılarak toplanmıştır. Çalışmaya 40 kimya öğretmen adayı katılmıştır. Bulgular, katılımcıların MTY kavramını anlamalarında öntestten sonteste istatistiksel olarak anlamlı değişim olduğunu göstermiştir. Öntestte MTY kavramını anlamaları bakımından farklılaşan alt-seviye MTY ve üst-seviye MTY grubu katılımcılarının, sonttestte MTY kavramına ilişkin benzer ve daha bilimsel kavramsal anlamalar geliştirdikleri tespit edilmiştir. Ayrıca,  katılımcıların öntestten sonteste modellerin doğasını anlamalarında istatistiksel olarak anlamlı değişim olduğu saptanmıştır.

___

  • ADADAN, E., IRVING, K.E. ve TRUNDLE, K.C. (2009). Impacts of multi- representational instruction on high school students’ conceptual understandings of the particulate nature of matter. International Journal of Science Education, 31(13), 1743-1775.
  • ADADAN, E., TRUNDLE, K.C. ve IRVING, K.E. (2010). Exploring grade 11 students' conceptual pathways of the particulate nature of matter in the context of multirepresentational instruction. Journal of Research in Science Teaching, 47(8), 1004-1035.
  • ADBO, K., ve TABER, K.S. (2009). Learners’ mental models of the particle nature of matter: A study of 16-year-old Swedish science students. International Journal of Science Education, 31(6), 757-786.
  • AINSWORTH, S.E. (1999). The functions of multiple representations. Computers and Education, 33(2-3), 131-152.
  • ALTMAN, D.G. (1991). Practical statistics for medical research. London: Chapman and Hall.
  • ATASOY, B., KADAYIFÇI, H. ve AKKUŞ, H. (2007). Öğrencilerin çizimlerinden ve açıklamalarından yaratıcı düşüncelerinin ortaya konulması (Çizimler ve açıklamalar yoluyla yaratıcı düşünceler. Türk Eğitim Bilimleri Dergisi, 5(4), 679-700.
  • AUSUBEL, D.P. ve ROBINSON, F.G. (1969). School learning: An introduction to educational psychology. New York, NY: Holt, Rinehart and Winston, Inc.
  • AYAS, A., ÖZMEN, H. ve Çalık, M. (2010). Students’ conceptions of the particulate nature of matter at secondary and tertiary level. International Journal of Science and Mathematics Education, 8, 165-184.
  • BERBER, N.C. ve Güzel, H. (2009). Fen ve matematik öğretmen adaylarının modellerin bilim ve fendeki rolüne ve amacına ilişkin algıları. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 21, 87-97.
  • BOZ, Y. (2006). Turkish pupils’ conceptions of the particulate nature of matter. Journal of Science Education and Technology, 15(2), 203-213.
  • CAMPBELL, D.T. ve STANLEY, J.C. (1963). Experimental and quasi-experimental designs for research. Boston: Houghton Mifflin Company.
  • ÇALIK, M. ve AYAS, A. (2005). A comparison of level of understanding of eighth-grade students and science student teachers related to selected chemistry concepts. Journal of Research in Science Teaching, 42(6), 638-667.
  • DOVE, J.E., EVERETT, L.A. ve PREECE, P. (1999). Exploring a hydrologic concept through children’s drawings. International Journal of Science Education, 21(5), 485-497.
  • GILBERT, J.K. ve BOULTER, C. (2000). Developing models in science education. Dordrecht: Kluwer Academic Publishers.
  • GLESNE, C. (1999). Becoming qualitative researchers: An introduction (2nd ed.). New York, NY: Longman.
  • GOBERT, J. ve BUCKLEY, B. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891-894.
  • GOBERT, J., O’DWYERB, L., HORWITZ, P., BUCKLEY, B., LEVY, S. ve WILENSKY, U. (2011). Examining the relationship between students’ understanding of the nature of models and conceptual learning in biology, physics, and chemistry. International Journal of Science Education, 33(5), 653-684.
  • GÜNEŞ, B., GÜLÇÎÇEK, Ç. ve BAĞCI, N. (2004). Eğitim fakültelerindeki fen ve matematik öğretim elemanlarının model ve modelleme hakkındaki görüşlerinin incelenmesi. Türk Fen Eğitimi Dergisi, 1(1), 35-45.
  • HAIDAR, A.H. (1997). Prospective chemistry teachers’ conceptions of the conservation of matter and related concepts. Journal of Research in Science Teaching, 34(2), 181-197.
  • HARRISON, A.G. ve TREAGUST, D.F. (2002). The particulate nature of matter: Challenges in understanding the submicroscopic world. In J.K. Gilbert, O.D. Jong, R. Justi, D.F. Treagust ve J.H.V. Driel (Eds.), Chemical education: Towards research-based practice (pp. 189-212). Dordrecht: Kluwer Academic.
  • HEWSON, P.W. ve THORLEY, N.R. (1989). The conditions of conceptual change in the classroom. International Journal of Science Education, 11(5), 541-553.
  • JOHNSON, P. (1998). Progression in children’s understanding of a ‘basic’ particle theory: A longitudinal study. International Journal of Science Education, 20(4), 393-412.
  • JOHNSON, P. ve PAPAGEORGIOU, G. (2010). Rethinking the introduction of particle theory: A substance-based framework. Journal of Research in Science Teaching, 47(2), 130-150.
  • JOHNSON, R.B. ve ONWUEGBUZIE, A.J. (2004). Mixed methods research: A research paradigm whose time has come. Educational Researcher, 33(7), 14-26.
  • JOHNSTONE, A.H. (1982). Macro- and micro-chemistry. School Science Review, 64(227), 377-379.
  • KOKKOTAS, P., VLACHOS, I. ve KOULAIDIS, V. (1998). Teaching the topic of the particulate nature of matter in prospective teachers’ training courses. International Journal of Science Education, 20(3), 291-303.
  • KOZMA, R. ve RUSSELL, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949-968.
  • KOZMA, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), p. 205-226.
  • LEBLEBİCİOĞLU, G. (2012). 8. sınıf öğrencilerinin madde kavramını kavramsal anlamaları üzerine nitel çalışma. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 43, 340-352.
  • LEITE, L., MENDOZA, J. ve BORSESE, A. (2007). Teachers’ and prospective teachers’ explanations of liquid-state phenomena: A comparative study involving three European countries. Journal of Research in Science Teaching, 44(2), 349-374.
  • LIU, X. ve LESNIAK, K. (2005). Students’ progression of understanding the matter concept from elementary to high school. Science Education, 89(3), 433-450.
  • MAYER, R.E. (2009). Multimedia learning (2nd ed.). New York: Cambridge University Press.
  • MİLLİ EĞİTİM BAKANLIĞI—Talim Terbiye Kurulu Başkanlığı (MEB- TTKB). (2013). Kimya dersi 9, 10, 11 ve 12. sınıf öğretim programı. Ankara: M.E.B.—TTKB.
  • http://ttkb.meb.gov.tr/www/ogretim-programlari/icerik/72.
  • NAKHLEH, M.B. ve SAMARAPUNGAVAN, A. (1999). Elementary school children’s beliefs about matter. Journal of Research in Science Teaching, 36(7), 777-805.
  • NATIONAL RESEARCH COUNCIL (NRC). (1996). National science education standards. Washington, DC: National Academy Press.
  • NUNNALLY, J.C. (1978). Psychometric theory (2nd ed.). New York, NY: McGraw Hill.
  • ÖZMEN, H., AYAS, A. ve COŞTU, B. (2002). Fen bilgisi öğretmen adaylarının maddenin tanecikli yapısı hakkındaki anlama seviyelerinin ve yanılgılarının belirlenmesi. Kuram ve Uygulamada Eğitim Bilimleri, 2(2), 507-529.
  • ÖZMEN, H. (2011). Turkish primary students' conceptions about the particulate nature of matter. International Journal of Environmental and Science Education, 6(1), 99-121.
  • PAPAGEORGIOU, G., STAMOVLASIS, D. ve JOHNSON, P. (2010). Primary teachers' particle ideas and explanations of physical phenomena: Effect of an in-service training course. International Journal of Science Education, 32(5), 629-652.
  • PAPAGEORGIOU, G., STAMOVLASIS, D. ve JOHNSON, P. (2013). Primary teachers’ understanding of four chemical phenomena: Effect of an in-service training course. Journal of Science Teacher Education, 24, 763-783.
  • POSNER, G.J., STRIKE, K.A., HEWSON, P.W. ve GERTZOG, W.A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227.
  • POZO, J.I. ve Gómez-Crespo, M.Á. (2005). The embodied nature of implicit theories: The consistency of ideas about the nature of matter. Cognition and Instruction, 23(3), 351-387.
  • PRAIN, V. (2006). Learning from writing in secondary science: Some theoretical and practical implications. International Journal of Science Education, 28(2-3), 179-201.
  • SCHWARZ, C. ve WHITE, B. (2005). Meta-modeling knowledge: Developing students’ understanding of scientific modeling. Cognition and Instruction, 23(2), 165-205.
  • SHULMAN, L.S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-23.
  • SINS, P., SAVELSBERGH, E., vanJOOLINGEN, W. ve vanHOUT‐WOLTERS, B. (2009). The relation between students’ epistemological understanding of computer models and their cognitive processing on a modelling task. International Journal of Science Education, 31(9), 1205-1229.
  • STAVY, R. (1990). Children's conception of changes in the state of matter: From liquid (or solid) to gas. Journal of Research in Science Teaching, 27(3), 247-266.
  • STEVENS, S. Y., DELGADO, C. ve KRAJCIK, J. S. (2010). Developing a hypothetical multi-dimensional learning progression for the nature of matter. Journal of Research in Science Teaching, 47(6), 687-715.
  • TABER, K.S. (2008). Conceptual resources for learning science: Issues of transience and grain-size in cognition and cognitive structure. International Journal of Science Education, 30(8), 1027-1053.
  • TALANQUER, V. (2009). On cognitive constraints and learning progressions: The case of “structure of matter”. International Journal of Science Education, 31(15), 2123-2136.
  • TASKER, R. ve DALTON, R. (2006). Research into practice: visualisation of the molecular world using animations. Chemistry Education Research and Practice, 7(2), 141-159.
  • TAYLOR, N. ve COLL, R.K. (2002). Pre-service primary teachers' models of kinetic theory: An examination of three different cultural groups. Chemistry Education: Research and Practice in Europe, 3(3), 293-315.
  • TREAGUST, D.F., CHITTLEBOROUGH, G. ve MAMIALO, T.L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24, 357-368.
  • TREAGUST, D.F. ve DUIT, R. (2008). Conceptual change: a discussion of theoretical, methodological and practical challenges for science education. Cultural Studies of Science Education, 3(2), 297- 328.
  • THOMAS, G. (2013). Changing the metacognitive orientation of a classroom environment to stimulate metacognitive reflection regarding the nature of physics learning. International Journal of Science Education, 35(7), 1183-1207.
  • TSITSIPIS G., STAMOVLASIS D. ve PAPAGEORGIOU, G. (2010) The effect of three cognitive variables on students’ understanding of the particulate nature of matter and its changes of state. International Journal of Science Education, 32(8), 987-1016.
  • VALANIDES, N. (2000). Primary student teachers’ understanding of the particulate nature of matter and its transformations during dissolving. Chemistry Education: Research and Practice in Europe, 1, 249-262.
  • VOSNIADOU, S., IOANNIDES, C., DIMITRAKOPOULOU, A. ve PAPADEMETRIOU, E. (2001). Designing learning environments to promote conceptual change in science. Learning and Instruction, 11(4-5), 381-419.
  • YAKMACI, B. ve ADADAN, E. (2013). Use of multiple representations in developing preservice chemistry teachers’ understanding of the structure of matter. International Journal of Environmental and Science Education, 8(1), 109-130.
  • WINDSCHITL, M. (2004). Folk theories of “inquiry:” how preservice teachers reproduce the discourse and practices of an atheoretical scientific method. Journal of Research in Science Teaching, 41(5), 481-512.
Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi-Cover
  • ISSN: 1300-302X
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1986
  • Yayıncı: Ondokuz Mayıs Üniversitesi Eğitim Fakültesi
Sayıdaki Diğer Makaleler

Ortaokul 8. Sınıf öğrencilerinin bilişsel gelişimlerini dikkate alarak yapılan yazma aktivitelerinin öğrencilerin yazma becerisi başarılarına etkisi

Nermin Elçin PETEKÇİOĞLU GEGİN

Akademisyenlerin Tükenmişlik Düzeylerii

Fatma Kayan Fadlelmula

11–18 Yaş Öğrencilerin Ses Hızı İle İlgili Sahip Oldukları Kavram Yanılgılarının Belirlenmesi

Merve Sözen, Mualla Bolat

Ortaöğretim Öğrencilerinin Çevresel Konular İle İlgili Bilgi Düzeylerinin Ölçülmesi

Nevzat KAZAK

Ortaokul Öğrencilerinin Geometrik Şekil Oluşturma Düzeylerinin Çeşitli Değişkenlerle İlişkisi

Funda Gündoğdu Alaylı, Elif Türnüklü

Oyun Tasarımcısı Ortaöğretim Öğrencileri: PowerPoint Oyun Tasarımının Sözcük Hazinesi Kazanımına Etkisi

Muhammet Demirbilek

Fen Bilgisi Öğretmen Adaylarının Araştırmaya Dayalı Eğitime Yönelik Algıları: “Bilimsel Araştırmanın İlkeleri” Ölçeği

Nilgün TATAR, Eylem YILDIZ FEYZİOĞLU, Serkan BULDUR, Bülent AYDOĞDU

Fen Bilgisi Öğretmen Adaylarının Fen Öğretimine Yönelik Zihinsel Modelleri, Öz Yeterlik İnançları ve Öğrenme Yaklaşımları

Eylem Yıldız Feyzioğlu, Burak Feyzioğlu, Aynur Küçükçıngı

İlköğretim Öğrencilerinin 3B Sanal Dünyada Kış Sporlarını Öğrenmeye Yönelik Algıları

Fatma GÜNAY, Özlem BAYDAŞ, Türkan KARAKUŞ, Yüksel GÖKTAŞ

Genel Fizik Laboratuvar Uygulamalarında 5e Öğrenme Modeline Göre Geliştirilen Materyallerin Öğrencilerin Bilimsel Süreç Becerilerine ve Akademik Başarılarına Etkisinin İncelenmesii

Sedat KARAÇAMİV