Isı ve Sıcaklık Kavramlarının Öğrencilerin Zihninde Yapılanmasına Yönelik Bir Örnek Olay İncelemesi

Öğrencilerin sınıf ortamına daha önceden kazandıkları pek çok bilgi, inanç ve fikirlerle geldikleri bilinmektedir. Bu inançlar öğrencinin bakış acısına göre oldukça mantıklı olsa da, bilimsel olarak kabul edilebilir nitelikte olanlardan oldukça farklı olabilmektedir. Bu nedenle öğrencilerin ön bilgilerinin belirlenmesi önem taşımakladır. Bu çalışmada, öğrencilerin en fazla hatalı bilgiye sahip oldukları iki kavram olan ısı ve sıcaklık kavramları ile ilgili öğrenci anlamaları belirlenmeye çalışılmıştır. Bu amaçla, ana okulundan yüksek öğrenime kadar beş kademede öğrenim gören öğrencilerden rasgele seçilen toplam 85 öğrenci (her seviyeden 5 öğrenci) ile yapılandırılmış mülakatlar yürütülmüştür. Ayrıca 4 anaokıdu öğretmeni ile bu kavramlarla ilgili yarı-yapılandırılmış mülakatlar gerçekleştirilmiştir. Elde edilen bulgular her seviyedeki öğrencilerin çeşitli hatalı fikirler taşıdıklarını göstermiştir. Bu ve benzer çalışmaların sonuçları dikkate alınarak, fen bilgisi konularına ilişkin tespit edilen kavram yanılgılarını giderebilecek nitelikte materyaller geliştirilmeli ve öğretmenlerin kullanımına sunulmalıdır.

A CASE STUDY ON CONSTRUCTED STUDENTS' MİND OF HEAT AND TEMPERATURE CONCEPTS

It is known that students begin the study o f science with preexisting conceptions, beliefs, and ideas about scientific phenomena. These beliefs and ideas are logical, sensible, and valuable from the students' point o f view, but differ from the accepted scientific views. Therefore, it is important to investigate the students' preconceptions. In this study, it is aimed to investigate students ‘ understanding about heat and temperature concepts. For this purpose, it was randomly selected and structured interviewed S5 students (five students from each level) who entitled from preschool to university. And also, it was semi-structured interviewed with four pre-school teachers about these concepts. Collected data showed that students from each level had some misconceptions. By taking into consideration to this and other similar studies’ results; materials having the quality o f removing the determined misconceptions related to science subjects should be developed and presented to teachers' usage. 

___

  • Andersson, B. (1986). Pupils’ explanations of some pspbcts of chemical reactions. Science Education, 70, 5, 549- 563.
  • Arnold, M. ve Millar, R. (1996), Learning the scientific ‘story’: A case study in the teaching and learning of elementary thermodynamics. Science Education, 80, 249-2^1.
  • Carlton, K. (2000). Teaching
  • about heat and temperature. Physics Education, 35, 2, 101İ105.
  • Cowan, R. ve Sutcliffe, N. B.
  • (1991). What children’s temperature
  • predictions reveal of| their understanding of temperature. British Journal of Educational Psychology, 61, 300-309.
  • Driver, R., J Squires, A.,
  • Rushworth, P. ve Wood-Robinson, V. (1994). Making sense of secondary
  • science: Research into1 children’s ideas,
  • I
  • London: Routledge.
  • Erickson, G. L. (1979).
  • Children’s conceptions of heat end temperature. Science Education, 63, 2, 221-230.
  • Erickson, G. L. (1980).
  • Children’s viewpoints bf heat: A second look. Science Education, 64, 3, 323-336.
  • Eryilmaz, A. (2002). Effects of conceptual assignments and conceptual change discussions; on students’ misconceptions and achievement regarding force and motion. International Journal of Science Education. 39, 10, 1001-1015.
  • Fleer, M, (1999). Children's alternative views: I Alternative to what? International Journal of Science Education, 21, 2, 119-135.
  • Gilbert J.IK,1 ve Watts, D. M.
  • (1983). Concepts, misconceptions and alternative conceppons: Changing
  • perspectives in | science Education. Studies in Science Education, 10, 61-98.
  • Griffiths., A. K. ve Preston K.R.
  • (1992) Grade 12 students misconceptions relating to fundamental characteristic# of atoms and molecules. Journal of Research in Science Teaching, 29, 6, 6131-628. i i
  • Gonzalez, F. M. (1997). Diagnosis of Spanish primary school stqpents’ common alternative science concepts. School Science and Mathematics. 97,2, 68-74.
  • |j Guzzetti, B. J. (2000). Learning
  • counter intuitive science concepts! vkhat have we learned from over a decade of research? Reading, Writing, Quarterly. 1 ¿|‘2, 89-95. j| I
  • Harrison, A, G., Grayson, D. J. ve Treagust, D. F, (1999). Investigating a grtide 11 student’s evolving conceppons of heat and temperature. Journal of Research in Science Teaching, 36, 1, 55-
  • it i ||
  • Hewson, P. W. ve Hewson, M.
  • G. (1984). The role of conceptual conflict ^'conceptual change and the design of science instruction. Instructional Science. 13,1-13. !
  • Kalem, R. ve Çallıca, H. (2001). Qrta-2, lise-1 ve üniversite-L : sınıf öğrencilerinin ‘ısı ve sıcaklık’ konusu ile ilgili kavram yanılgılarının incelenmesi, Sfeni Binyılın Başında Türkiye’dş Fen Bilimleri Eğitimi Sempozyumu! Bildiri kitabı, 260-265, İstanbul. t
  • (¡i Laburu, C. E, ve Niaz, M.
  • (2002). A Lakatosian framework to analyze situations of cognitive conflict ^ud controversy İn students’ understanding of heat energy^ and temperature. Journal of . Science Education and Technology, 11, 3, 211- 219. [i I
  • Lewis, E. L. ve Linn, M. C.
  • Ü994). Heat energy and temperature Concepts of adolescents, adUlUj, and ejxperts: Implications for curricular
  • improvements. Journal of Research in iŞcience Teaching. 31,6, 657-677.
  • Nakhleh, M. B. (1992). Why
  • some students don’t learn chemistry: Chemical misconceptions. Journal of Chemical Education. 69, 3, 191-196.
  • Yüksek Lisans Tezi, KTÜ, Fen Bilimleri Enstitüsü, Trabzon.
  • Palmer, D. H. (1999). Exploring the 1 ink betvveen students’ scientific and nonscientific conceptions. Science Education, 83, 639-653.
  • Piaget, J. (1951). The child’s conception of the world. London: Routledge & Kegan Paul LTD.
  • Özsevgeç, T. (2002). İlköğretim
  • öğrencilerinin fen bilgisi konularındaki zihinsel gelişim düzeyleri ile sahip oldukları profiller arasındaki ilişkilerin tespiti, Yayınlanmamış
  • Taber, K. S. (2001). Constructing chemical concepts in the classroom?: Using research to inform practice. Chemistry Education: Research and Practice in Europe. 2, 1, 43-51.
  • Tsai, C.-C. (1998). The
  • constructivist epistemology: The
  • interplay between the philosophy of science and students’ science learning. Curriculum and Teaching. 13, 1.