ALKALİ İLE AKTİVE EDİLMİŞ ÖĞÜTÜLMÜŞ DİATOMİTLİ HARÇLARIN DAYANIM ÖZELLİKLERİ

Bu çalışmada, sodyum karbonat (Na2CO3) ile aktive edilmiş diatomitli harçların eğilme ve basınç dayanımı değerleri araştırılmıştır. Karışımlarda, Niğde Başmakçı bölgesinden temin edilen 0-5 mm boyutlarındaki kırılmış kalker kumu kullanılmıştır. Karışımlarda, bağlayıcıyı aktive etmek için kullanılan Na2CO3 ve kırılmış kalker miktarları sabit tutulmuştur. Sadece çimento ile üretilen kontrol harcına ek olarak, sabit oranda Na2CO3 ile birlikte çimento yerine ağırlıkça % 0, 25, 50, 75 ve 100 oranlarında öğütülmüş diatomit kullanılarak harç numuneler üretilmiştir. Dahası aynı karışım oranlarındaki çimento yerine % 4 oranında titanyum dioksit (TiO2) kullanılarak da harç numuneler üretilmiştir. Eğilme ve basınç dayanımlarını belirlemek için üretilen numunelere deney gününe kadar kuru veya ıslak kür uygulanmıştır. Öğütülmüş diatomit ve TiO2 içeren harçlara kuru ve ıslak kür uygulandıktan sonra belirlenen eğilme ve basınç dayanımı sonuçları ile kontrol harcı sonuçları karşılaştırılmıştır. Deneysel sonuçlar çimento yerine kullanılan diatomit miktarı arttıkça, Na2CO3 ile aktive edilmiş diatomitli harçların eğilme ve basınç dayanımı değerlerinin azaldığını göstermiştir.

THE STRENGTH PROPERTIES OF ALKALI-ACTIVATED GROUND

In this study, the flexural and compressive strength values of ground diatomite mortars activated with sodium carbonate (Na2CO3) were investigated. The crushed limestone with maximum size of 0-5 mm provided from Niğde-Başmakçı region was used. The amounts of Na2CO3 used to activate the binder and crushed limestone were kept constant used in the mixtures. In addition to the control mortar control produced by only cement, the mortar specimens using the replacement ratios of 0, 25, 50, 75 and 100% ground diatomite by weight of cement together with Na2CO3 at a constant rate were produced. Moreover, the mortar mixtures using the replacement of 4% titanium dioxide (TiO2) by weight of cement were produced in the same mixture proportions. The dry or wet curing was applied on the produced specimens until the testing day to determine the flexural and compressive strength values. The flexural and compressive strength results of mortars made with ground diatomite and TiO2applied the dry and wet curing were compared with the results of control mortars. The experimental results show that the flexural and compressive strength values of ground diatomite mortars activated with NaCO3 decreases as the amount of ground diatomite used instead of cement increases.

___

  • [1] HAN, S.H., KIM, J.K., PARK, Y.D., "Prediction of Compressive Strength of Fly Ash Concrete by NeW Apparent Activation Energy Function", Cement and Concrete Research, 33, 965-971, 2003.
  • [2] ÖZCAN, F., Silis Dumanı Içeren Harç ve Betonlarm Özellikleri ve Hızlandırılmış Kür ile Dayanım Tahmini, Doktora Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana, 2005.
  • [3] ÖZKUL, H., TAŞDEMİR, M.A., TOKYAY, M., UYAN, M., Her Yönüyle Beton, Türkiye Hazır Beton Birliği, Ankara, Türkiye, 2004.
  • [4] GÖKKONCA KARAHISAR E., Diatomit Katkılı Harçların Bazı Mekanik ve Fiziksel Özelliklerinin Değişiminin İncelenmesi, Yüksek Lisans Tezi, Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Denizli, 2010.
  • [5] XU, S., WANG, J., MA, Q., ZHAO, X., ZHANG, T., "Study on the Lightweight Hydraulic Mortars Designed by the Use of Diatomite as Partial Replacement of Natural Hydraulic Lime and Masonry Waste as Aggregate", Constıuction and Building Materials, 73, 33--40, 2014.
  • [6] ERGÜN, A., "Effects of the Usage of Diatomite and Waste Marble Powder as Partial Replacement of Cement on the Mechanical Properties of Concrete", Construction and Building Materials, 25, 806-812, 201 1.
  • [7] COLLINS, F.G., SANJAYAN, J.G., "Workability and Mechanical Properties of Alkali Activated Slag Concrete", Cement and Concrete Research, 29, 455--458, 1999.
  • [8] AYDIN, S., Alkalilerle Aktive Edilmiş Yüksek Fırın Cüıufu Bağlayıcılı Lifli Kompozit Geliştirilmesi, Doktora Tezi, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, Izmir, 2010.
  • [9] CHANG, J.J., YEIH, W., HUNG C.C., "Effects of Gypsum and Phosphoric Acid on the Properties of Sodium Silicate-Based Alkali-Activated Slag Pastes", Cement and Concrete Composites, 27, 85--91, 2005.
  • [10] PUERTAS, F., AMAT, T., JIMENEZ, A.F., VAZQUEZ, T., "Mechanical and Durable Behaviour of Alkaline Cement Mortars Reinforced with Polypropylene Fibres", Cement and Concrete Research, 33, 2031-2036, 2003.
  • [11] WANG, S.D., PU, X.C., SCRIVENER, K.L., PRATT, P.L., "Alkali Activated Slag Cement and Concrete: Review of Properties and Problems", Advances in Cement Research, 27, 93-102, 1995.
  • [12] HARDJITO, D., WALLAH, S.E., SUMAJOUW, D.M.J., RANGAN, B.V., "On the Development of Fly Ash-based Geopolymer Concrete", ACI Materials Journal, 101, 467--472, 2004.
  • [13] PACHECO-TORGAL, F., CASTRO-GOMES, J., JALALI, S., "Alkali Activated Binders: Review. Part 2. About Materials and Binder Manufacture", Construction and Building Materials, 22, 1305--1314, 2008.
  • [14] YANG, K.H., SONG, J.K., "Workability Loss and Compressive Strength Development of Cementless Mortars Activated By Combination of Sodium Silicate and Sodium Hydroxide", Journal of Materials in Civil Engineering, 21, 119-127, 2009.
  • [15] FERNANDEZ-JIMENEZ, A., PALOMO, .G., PUERTAS, F., "Alkali-Activated Slag Mortars Mechanical Strength Behavior", Cement and Concrete Research, 29, 1313-1321, 999.
  • [16] BAKHAREV, T., SANJAYAN, J.G., CHENG, Y.B., "Alkali Activation of Australian Slag Cements", Cement and Concrete Research, 29, 113--120, 1999.
  • [17] KRIZAN, D., ZIVANOVIC, B., "Effects of Dosage and Modulus of Water Glass on Early Hydration of Alkali--Slag Cements", Cement and Concrete Research, 32, 1181-1188, 2002.
  • [18] BERNAL, S., GUTIERREZ, R.D., SILVIO, D., RODRIGUEZ, E., "Effect of Binder Content on the Performance of Alkali-Activated Slag Concretes", Cement and Concrete Research, 41, 1-8, 2011.
  • [19] SHI, C., KRIVENKO, P.V., ROY, D., Alkali-Activated Cements and Concretes, Taylor and Francis, USA and Canada, 2006.
  • [20] ROY, D.M., JIANG W., SILSBEE, M.R., "Chloride Diffusion in Ordinary, Blended, and Alkali-Activated Cement Pastes and Its Relation to Other Properties", Cement and Concrete Research, 30, 1879-1884, 2000.
  • [21] BAKHAREV, T., SANJAYAN, .G., CHENG, Y.B., "Sulfate Attack on Alkali-Activated Slag Concrete", Cement and Concrete Research, 32, 211--216, 2002.
  • [22] BAKHAREV, T., SANJAYAN, J.G., CHENG, Y.B., "Resistance of Alkali-Activated Slag Concrete to Acid Attack", Cement and Concrete Research, 33, 1607-1611, 2003 . [23] SHI, C., XIE, P., "Interface Between Cement Paste and Quartz Sand in Alkali Activated Slag Mortars", Cement and Concrete Research, 28, 887-896, 1998.
  • [24] ZIVICA, V., "Effects of Type and Dosage of Alkaline Activator and Temperature on the Properties of Alkali-Activated Slag Mixtures", Construction and Building Materials, 21, 1463--1469, 2007.
  • [25] COLLINS, F.G., SANJAYAN, J.G., "Workability and Mechanical Properties of Alkali Activated Slag Concrete", Cement and Concrete Research, 29, 455-458, 1999.
  • [26] SERDAR, A., "A Ternary Optimisation of Mineral Additives of Alkali Activated Cement Mortars", Construction and Building Materials, 43, 131--138, 2013.
  • [27] ATIŞ, C.D., BILIM, C., ÇELIK, Ö., KARAHAN, O., "Influence of Activator on the Strength and Drying Shrinkage of Alkali-Activated Slag Mortar", Construction and Building Materials, 23, 548-555, 2009.
  • [28] KRIZAN, D., ZIVANOVIC, B., "Effects of Dosage and Modulus of Water Glass on Early Hydration of Alkali-Slag Cements", Cement and Concrete Research, 32, 1181-1188, 2002.
  • [29] CHI, M., HUANG, R., "Binding mechanism and properties of alkali activated fly ash/slag mortars", Construction and Building Materials, 40, 291-298, 2013.
  • [30] PUERTAS, F., MARTINEZ-RAMIREZ, S., ALONSO, S., VAZOUEZ, T., "Alkali-Activated Fly Ash/Slag Cements: Strength Behaviour and Hydration Products", Cement and Concrete Research, 30, 1625-1632, 2000.
  • [31] HAHA, B.M., LOTHENBACH, B., LE SAOUT, G., WINNEFELD, F., "Influence of Activator Type on Hydration Kinetics, Hydrate Assemblage and Microstructural Development of Alkali Activated BlastFurnace Slags", Cement and Concrete Research, 41, 301-310, 2011.
  • [32] ROY, D.M., IDORN, G.M., "Hydration, Structure and Blast Furnace Slag Cements, Mortars and Concrete", ACI Journal, Proceedings, 79, 445-457, 1982.
  • [33] CHANG, .C., YEIH, W., HUNG, C.C., "Effects of Gypsum and Phosphoric Acid on the Properties of Sodium Silicate-Based Alkali-Activated Slag Pastes", Cement and Concrete Composites, 27, 85-91, 2005.
  • [34] PUERTAS, F., FERNANDEZ-JIMENEZ, A., "Mineralogical and Microstructural Characterisation of Alkali--Activated Fly Ash/Slag Pastes", Cement and Concrete Composites, 25, 287-292, 2003.
  • [35] EL-DIDAMONY, H., AMER, A.A., ELA-ZIZ, H.A., "Properties and Durability of Alkali--Activated Slag Pastes Immersed In Sea Water", Ceramics International, 38, 3773-3780, 2012.
  • [36] OH, J.E., MONTEIRO, P.J.M., JUN, S.S., CHOI, S., CLARK, S.M., "The Evolution of Strength and Crystalline Phases for Alkali-Activated Ground Blast Furnace Slag and Fly Ash-Based Geopolymers", Cement and Concrete Research, 40, 189-196, 2010.
  • [37] GUO, X., SHI, H.U., CHEN, L., DICK, W.A., "Alkali-Activated Complex Binders from Class Fly Ash and Ca-Containing Admixtures", Journal of Hazardous Materials, 173, 480--486, 2010.
  • [38] CHINDAPRASIRT, P., CHAREERAT, T., SIRIVIVATNANON, V., "Workability and Strength of Coarse High Calcium Fly Ash Geopolymer", Cement and Concrete Composites, 29, 224--229, 2007.
  • [39] FERNANDEZ-JIMENEZ, A., PALOMO, .G., "Composition and Microstructure of Alkali Activated Fly Ash Binder: Effect of the Activator", Cement and Concrete Research, 35, 1984--1992, 2005.
  • [40] KHALIFEH, M., SAASEN, A., VRALSTAD, T., HODNE, H., "Potential Utilization of Class Fly AshBased Geopolymer in Oil Well Cementing Operations", Cement and Concrete Composites, 53, 10--17, 2014.
  • [41] TS EN 197-1, Çimento-Bölüm 1: Genel Çimentolar-Bileşim, Özellikler ve Uygunluk Kriterleri, Türk Standartları Enstitüsü, Ankara, 2012.
  • [42] ASTM 311/C 311 M--13, Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete, Annual Book of ASTM Standarts, 2013.
  • [43] TS 802, Beton Karışım Tasarımı Hesap Esasları, Türk Standartları Enstitüsü, Ankara, 2009.
  • [44] TS EN 934-2+A1, Kimyasal Katkılar-Beton, Harç ve Şerbet İçin-Bölüm 2: Beton Kimyasal Katkıları- Tarifler, Gerekler, Uygunluk, İşaretleme ve Etiketleme, Türk Standartları Enstitüsü, Ankara, 2013.
  • [45] ASTM 494-99a, Standard Specification for Chemical Admixtures for Concrete, Annual Book of ASTM Standards, 2002.
  • [46] TS EN 1015-11, Kâgir Harcı-Deney Metotları-Bölüm 11: Sertleşmiş Harcın Basınç ve Eğilme Dayanımmın Tayini, Türk Standartları Enstitüsü, Ankara, 2000.
Niğde Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2147-012X
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2012
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi