X-Bant uydu uygulamaları için dielektrik ölçüm yaklaşımı tabanlı kompakt U-yarıklı yama anten tasarımı

Bu çalışmada, X bant uzay uygulamaları için Flame Retardant 4 (FR4) malzemesinin dielektrik ölçüm yaklaşımına dayalı kompakt bir U-Yarıklı yama anten tasarımı sunulmaktadır. Tasarım yöntemine uygun olarak, anten tasarımlarında kullanılacak HFSS tasarım aracına, FR4 malzemesinin dalga kılavuzu yöntemi kullanılarak X-bantta ölçülen frekansa bağlı dielektrik sabiti ve tanjant kaybı değerleri uygulanmıştır. Daha sonra, yaklaşımın anten tasarımları üzerindeki fonksiyonel performansı, literatürdeki standart bir anten tasarımının benzetim ve ölçüm sonuçları ile kıyaslanarak doğrulanmıştır. Doğrulanan sonuçlar ışığında, önerilen tasarım yöntemi kullanılarak X-bant uzay uygulamaları için yanal yan yarıklara sahip yeni bir U-Yarıklı yama anten tasarımı, bir besleme hattı ile sunulmaktadır. Sunulan kompakt anten tasarımı ile merkez frekansta (9,5 GHz) 1,77 dB kazanç ve 8,53 GHz'den 10,63 GHz'e kadar frekans bant genişliği sağlamaktadır.

Dielectric measurement approach based compact U-slot patch antenna design for X-band satellite applications

In this study, a compact U-slot patch antenna design based on dielectric measurement approach of Flame Retardant 4 (FR4) material is presented for X band space applications. In accordance with the design method, the measured frequency dependent dielectric constant and tangent loss values of the FR4 material at X-band using the waveguide method is applied to the HFSS design tool to be used in antenna designs. Then, the functional performance of the design method on antennas is verified by comparing the simulation and measurement results of a conventional antenna design in the literature. In the light of the verified results, a new U-slot patch antenna design with lateral side slots for X-band space applications is presented with a feed line by using the proposed design method. The presented compact antenna design provides 1.77 dB gain at the center frequency (9.5 GHz) and the frequency bandwidth from 8.53 GHz to 10.63 GHz.

___

  • C. A. Balanis, Antenna Theory Analysis and Design. Wiley, 2016.
  • Ramesh Garg, Prakash Bhartia, Microstrip antenna design handbook. Artech house, 2001.
  • S. Fatima Farida, et al., Effect of substrate thickness and permittivity on the characteristics of rectangular microstrip antenna. Conference on Precision Electromagnetic Measurements Digest, pp. 598-599, Washington, DC, USA, 1998.
  • M. Y. I. M. Inam, Analysis of Design Optimization of Bandwidth and Loss Performance of Reflectarray Antennas Based on Material Properties. Modern Applied Science, 4, 28-35, 2010. https://doi.org /10.55 39/mas.v4n1p28.
  • J. R. Aguilar, M. Beadle, P. T. Thompson, and M. W. Shelley, The microwave and RF characteristics of FR4 substrates. IEE Colloquium on Low Cost Antenna Technology, pp. 2/1–2/6, London, UK, 1998.
  • E. L. Holzman, Wideband measurement of the dielectric constant of an FR4 substrate using a parallel-coupled microstrip resonator. IEEE Transactions on Microwave Theory and Techniques, 54, pp. 3127-3130, 2006. https://doi.org/10.1109/TMTT.2006.877061.
  • G. C. Hock, C. K. Chakrabarty, Emilliano and M. H. Badjian, Dielectric verification of FR4 substrate using microstrip bandstop resonator and CAE tool. IEEE 9th Malaysia International Conference on Communicatio ns (MICC), pp. 894-898, Kuala Lumpur, 2009.
  • P. S. Bansode, K. Makhija, S. A. Gangal and R. C. Aiyer, Nondestructive measurement of dielectric constant using a 2.4 GHz microstrip patch antenna. 2nd International Symposium on Physics and Technology of Sensors (ISPTS), pp. 219-223, Pune, 2015.
  • W. L. Pritchard, Satellite communication-an overview of the problems and programs. Proceedings of the IEEE, 65, 294-307, 1977. https://doi.org/10.1109/ PROC.1977.10483.
  • J. Baker-Jarvis, Transmission/reflection and short-circuit line permittivity measurements. National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA, Technical Report 1341, 1995.
  • O. Kiris, F. Ozturk and M. Gokten, A Dielectric Measurement-Based Design Approach for X-Band Applications on FR4 Substrate. IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, pp. 783-784, Montreal, QC, Canada, 2020.
  • W. Imbraile, S. Gao, and L. Boccia, Space Antenna Handbook. Wiley, Hoboken, 2012.
  • Kraus, J. D. and R. J. Marhefka, Antennas: For all Applications. McGraw-Hill, 2002.
  • M. Ayad, M. Benziane, K. Saoudi, A. Arabi, M. Rezki and S. Medjedoub, Conception and study of a patch antenna for VSAT application. 19th International Multi-Conference on Systems, Signals & Devices (SSD), pp. 433-437, Sétif, Algeria, 2022.
  • S. B. Sharma, A. Ugle and K. Parikh, A Novel U-slot Aperture Coupled Annular-Ring Microstrip Patch Antenna for Multiband GNSS Applications. 14th European Conference on Antennas and Propagation (EuCAP), pp. 1-3, Copenhagen, Denmark, 2020.
  • N. Prema, "Design of multiband microstrip patch antenna for C and X band," Optik-International Journal for Light and Electron Optics, 127, pp. 8812-8818, 2016.
  • A. K. Sidhu and J. S. Sivia, Microstrip Rectangular Patch Antenna for S and X band applications. International Conference on Wireless Communica tions, Signal Processing and Networking (WiSPNET), pp. 248-251, Chennai, India, 2016.
  • M. N. Rahman, M. T. Islam, N. Misran and M. Samsuzzaman, A tuning fork-shaped microstrip patch antenna for X-band satellite and radar applications. 6th International Conference on Electrical Engineering and Informatics (ICEEI), pp. 1-2, Langkawi, Malaysia, 2017.
  • M. S. Ellis, Z. Zhao, J. Wu, X. Ding, Z. Nie, and Q.-H. Liu, A novel simple and compact microstrip-fed circularly polarized wide slot antenna with wide axial ratio bandwidth for C-band applications. IEEE Transactions on Antennas and Propagation, 64, 1552-1555, 2016. https://doi.org/10.1109/TAP.2016. 25260 76.
  • M. Samsuzzaman, M. Islam, N. Misran, and M. M. Ali, Dual band X shape microstrip patch antenna for satellite applications. Procedia Technology, 11, 1223-1228, 2013. https://doi.org/10.1016/j.protcy.2013.12. 317.
  • T. Huynh and K. F. Lee, Single-layer single-patch wideband microstrip antenna. Electronics Letters, 31, 1310-1312, 1995. https://doi.org/10.1049/el:19950950.
  • K. F. Lee, K. M. Luk, K. F. Tong, S. M. Shum, T. Huynh and R. Q. Lee, Experimental and simulation studies of the coaxially fed U-slot rectangular patch antenna. IEE Proceedings - Microwaves, Antennas and Propagation, 144, 354-358, 1997. https://doi.org/10.10 49/ip-map:19971334.
  • K. F. Lee, S. L. S. Yang and A. Kishk, The versatile U-slot patch antenna. 3rd European Conference on Antennas and Propagation, pp. 3312-3314, Berlin, Germany, 2009.
  • M. Clenet and L. Shafai, Multiple resonances and polarisation of U slot patch antenna. Electronics Letters, 35, 101-103, 1999. https://doi.org/10.1049/el :19990087.
  • K.-F. Tong, K.-M. Luk, K.F. Lee and R.Q. Lee, A broad-band U-slot rectangular patch antenna on a microwave substrate. IEEE Transactions on Antennas and Propagation, 48, 954-960, 2000. https://doi.org/ 10.1109/8.865229.
  • A. A. Qureshi, M. U. Afzal, T. Tauqeer and M. A. Tarar, Performance analysis of FR-4 substrate for high frequency microstrip antennas. China-Japan Joint Microwave Conference, pp. 1-4, Hangzhou, China, 2011.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi