TOZ METALURJİSİ İLE ÜRETİLMİŞ Al / Y2O3 NANOKOMPOZİTLERİNİN ODA VE YÜKSEK SICAKLIKTAKİ KOROZYON DAVRANIŞININ İNCELENMESİ

Bu çalışmada, Al / Y2O3 metal matrisli nanokompozitleri ( %2 ve %4 ağ.) toz metalurjisi ile üretilmiştir. Üretilen numunelerin mikroyapı ve yoğunlukları incelenmiştir. Mikroyapı karakterizasyonu partiküllerin homojen dağıldığını göstermiştir. Ayrıca, numunelerin korozyon davranışları, 20ºC ve 50ºC’de 1 M HCl çözeltisinde potansiyodinamik ve daldırma testleriyle sistematik olarak incelenmiştir. Korozyon mekanizmalarını anlamak için, SEM çalışması gerçekleştirilmiştir. Potansiyodinamik korozyon test sonuçları,  Al / 4Y2O3 kompozitinin oda sıcaklığında en iyi korozyon performansına sahip olduğunu göstermiştir. Daldırma testi sonunda, yüksek sıcaklıkta (50 ºC), kompozitlerin ağırlık kayıplarının saf Al’a göre fazla olduğu gözlenmiştir. Oyuklanma ve tane sınırı korozyonu gözlenmiştir.

___

  • [1] SOLTANI, S., KHOSROSHAHI, R.A., MOUSAVIAN, R.T., JIANG, Z.Y., BOOSTANI, A.F., BRABAZON, D., “Stir Casting Process for Manufacture of Al–SiC Composites”, Rare Metals, 36(7), 581-590, 2017.
  • [2] RAMNATH, B.V., ELANCHEZHIAN, C., ANNAMALAI, R.M., ARAVIND, S., ATREYA, T.S.A., VIGNESH, V., SUBRAMANIAN, C., “Aluminium Metal Matrix Composites - A Review”, Reviews on Advanced Materials Science, 38, 55-60, 2014.
  • [3] IZADI, H., NOLTING, A., MUNRO, C., BISHOP, D.P., PLUCKNETT, K.P., GERLICH, A.P., “Friction Stir Processing of Al/SiC Composites Fabricated by Powder Metallurgy”, 213, 1900-1907, 2013.
  • [4] TENG, F., YU, K., LUO, J., FANG, H., SHI, C., DAI, Y., XIONG, H., “Microstructures and Properties of Al−50%Sic Composites for Electronic Packaging Applications”, Transactions of Nonferrous Metals Society of China, 26, 2647-2652, 2016.
  • [5] ZHANG, L., XU, H., WANG, Z., LI, Q., WU, J., “Mechanical Properties and Corrosion Behavior of Al/SiC Composites”, Journal of Alloys and Compounds, 678, 23-30, 2016.
  • [6] ZEBARJAD, S.M., SAJJADI, S.A., “Microstructure Evaluation of Al–Al2O3 Composite Produced by Mechanical Alloying Method”, Materials and Design, 27, 684–688, 2006.
  • [7] RAHIMIAN, M., EHSANI, N., PARVIN, N., BAHARVANDI, H., “The Effect of Particle Size, Sintering Temperature and Sintering Time on The Properties of Al–Al2O3 Composites, Made by Powder Metallurgy”, Journal of Materials Processing Technology, 209, 5387–5393, 2009.
  • [8] ZEBARJAD S.M., SAJJADI S.A., “Dependency of Physical and Mechanical Properties of Mechanical Alloyed Al–Al2O3 Composite on Milling Time”, Materials and Design, 28, 2113–2120, 2007.
  • [9] AL-QUTUB, A.M., ALLAM, I.M., ABDUL SAMAD M.A., “Wear and Friction of Al–Al2O3 Composites at Various Sliding Speeds”, Journal of Materials Science, 43, 5797-5803, 2008.
  • [10] GHASALI, E., ALIZADEH, M., EBADZADEH. T., “Mechanical and Microstructure Comparison Between Microwave and Spark Plasma Sintering of Al-B4C Composite”, Journal of Alloys and Compounds, 655, 93-98, 2016.
  • [11] NIETO, A., YANG, H., JIANG, L., SCHOENUNG, J.M., “Reinforcement Size Effects on The Abrasive Wear of Boron Carbide Reinforced Aluminum Composites”, Wear, 390–391, 228–235, 2017.
  • [12] SHIRVANIMOGHADDAM, K., KHAYYAM, H., ABDIZADEH, H., KARBALAEI AKBARI M., PAKSERESHT, A.H., GHASALI, E., NAEBE, M., “Boron Carbide Reinforced Aluminium Matrix Composite: Physical, Mechanical Characterization and Mathematical Modelling”, Materials Science & Engineering A, 658, 135-149, 2016.
  • [13] GUO, H., ZHANG, Z., “Processing and Strengthening Mechanisms of Boron Carbide-Reinforced Aluminum Matrix Composites”, Materials Today, 73:2, 62-67, 2018.
  • [14] LI, P., KANDALOVA, E.G., NIKITIN, V.I., MAKARENKO, A.G., LUTS, A.R., YANFEI, Z., “Preparation of Al–TiC Composites by Self-Propagating High-Temperature Synthesis, Scripta Materialia” 49, 699–703, 2003.
  • [15] KENNEDY, A.R., WESTON, D.P., JONES M.I., “Reaction in Al–TiC Metal Matrix Composites” Materials Science and Engineering A, 316, 32–38, 2001.
  • [16] KARANTZALIS, A.E., WYATT, S., KENNEDY, AR., “The Mechanical Properties of Al-TiC Metal Matrix Composites Fabricated by A Flux-Casting Technique”, Materials Science and Engineering A, 237, 200-206, 1997.
  • [17] MOHAPATRA, S., CHAUBEY, A.K., MISHRA, D.K., SINGH, S.K., “Fabrication of Al–TiC Composites by Hot Consolidation Technique: Its Microstructure and Mechanical Properties,” Journal of Materials Research and Technology, 5(2):117–122, 2016.
  • [18] RAMACHANDRA, M., ABHISHEK, A., SIDDESHWAR, P., BHARATHI, V., “Hardness and Wear Resistance of ZrO2 Nano Particle Reinforced Al Nanocomposites Produced by Powder Metallurgy”, Procedia Materials Science, 10, 212-219, 2015.
  • [19] ABOU EL-KHAIR, M.T., ABDEL AAL A., “Erosion–Corrosion and Surface Protection of A356 Al/ZrO2 Composites Produced by Vortex And Squeeze Casting”, Materials Science and Engineering A, 454–455, 156–163, 2007.
  • [20] ZHOU, W., YAMAGUCHI, T., KIKUCHI, K., NOMURA, N., KAWASAKI, A., “Effectively Enhanced Load Transfer by Interfacial Reactions in Multi-Walled Carbon Nanotube Reinforced Al Matrix Composites”, Acta Materialia, 125, 369-376, 2017.
  • [21] ZAKARIA, H.M. “Microstructural and Corrosion Behavior of Al/SiC Metal Matrix Composites”, Ain Shams Engineering Journal, 5, 831–838, 2014.
  • [22] HAN, Y.M., CHEN, X.G., “Electrochemical Behavior of Al-B4C Metal Matrix Composites in NaCl Solution”, Materials, 2015, 8, 6455-6470.
  • [23] HASSAN, S.F., “Effect of Primary Processing Techniques on the Microstructure and Mechanical Properties of Nano-Y2O3 Reinforced Magnesium Nanocomposites”, Materials Science and Engineering A, 528, 5484–5490, 2011.
  • [24] PEREZ, O.R., VALDEZ, S., MOLINA, A., MEJIA-SINTILLO, S., GARCIA-PEREZ, C., SALINAS-BRAVO, V. M., GONZALEZ-RODRIGUEZ, J.G., “Corrosion Behavior of Al–Mg–Zn-Si Alloy Matrix Composites Reinforced with Y₂O₃ in 3.5% NaCl Solution”, International Journal of Electrochemical Science, 12, 7300-7311, 2017.
  • [25] AYDIN, F., SUN, Y., “Investigation of Wear Behaviour and Microstructure of Hot-Pressed TiB2 Particulate Reinforced Magnesium Matrix Composites”, Canadian Metallurgical Quarterly, 57:4, 455-469, 2018.
  • [26] AYDIN, F., SUN, Y., TURAN, M.E., “The Effect of TiB2 Content on Wear and Mechanical Behavior of AZ91 Magnesium Matrix Composites Produced By Powder Metallurgy”, Powder Metallurgy and Metal Ceramics, 564-572, 2019.
  • [27] A. Standard, Standard practice for calculation of corrosion rates and related information from electrochemical measurements, Annu. Book ASTM Stand. ASTM Int.West Conshohocken PA 3 (2006) G102–G189.
  • [28] SHARMA, S.C., “A Study on Stress Corrosion Behavior of Al6061/Albite Composite in Higher Temperature Acidic Medium Using Autoclave”, Corrosion Science, 43, 1877-1889, 2001.