Sucul ortamdan amoksisilin gideriminde hibrit adsorpsiyon/oksidasyon performansının değerlendirilmesi

Avrupa ve Türkiye genelinde en çok tüketilen penisilin grubu antibiyotik ilaç etken maddesi, Amoksisilin (AMX) dir. Lipofilik yapısı ve biyobozunurluğunun çok düşük olması sebebiyle AMX konvansiyonel atıksu arıtma tesislerinde arıtılamadan alıcı ortama verilmektedir. Alıcı ortamlarda mikro ve nano konsantrasyonlarda tespit edilmektedir. Ancak kullanım miktarlarına paralel olarak çevresel ortamlardaki varlıklarının artacağı düşünül mektedir. Küresel antibiyotik direnci en yüksek 6. ülke olan Türkiye için, doğal su kaynaklarının antibiyotik türü etken madde kirliliğine karşın kaynakta engellenmesi oldukça önemlidir. Bu çalışmada, AMX’in, sentezlenen yeni bir adsorban (Fe3O4&Tween-85@PEI) ve kuvvetli bir oksidant hipokloröz asit (HOCI), ile sucul ortamdan giderilmesi amaçlanmıştır. AMX adsorpsiyon ile oda sıcaklığında 30 dakikada pH: 2’de %25 giderilirken, HOCI ile 50 0C’de 0.025 mM konsantrasyonda, aynı pH’da %80 oranında giderilmiştir. Elde edilen sonuçlara göre, adsorpsiyon prosesi fiziksel, oksidasyon işlemi ise kimyasaldır. Adsorpsiyon ve oksidasyon prosesleri sırasıyla Freundlich izotermine ve ikinci derece kinetiğe uyum göstermiştir.

Removal of amoxicillin in aqueous media by hybrid adsorption/oxidation

The most consumed penicillin group, an antibiotic active ingredient in Europe and Turkey, is Amoxicillin (AMX). Due to its lipophilic structure and low biodegradability, it is discharged into the receiving environment from conventional wastewater treatment plants without treatment. It is detected at the micro and nano concentration in receiving environments. But it is thought that their presence will increase in environment parallel to their increasing use. It is essential to prevent the contamination of natural water resources with antibiotic drug active ingredients for Turkey, a country with the 6th highest global antibiotic resistance. In this study, it was aimed to remove AMX from the aquatic media with the synthesized a new adsorbent (Fe3O4&Tween-85@PEI and HOCI) and a strong oxidant hypochlorous acid (HOCI). While AMX was removed 25% by adsorption at room temperature in 30 minutes at pH: 2, was degraded 80% by HOCI at the same pH and 500C with 0.025 mM concentration. According to obtained results, the adsorption process is physical, and the advanced oxidation is chemical. The adsorption and the oxidation processes were fitted to the Freundlich isotherm and the pseudo-second order kinetic respectively.

___

  • I. Anastopoulos, I. Pashalidis, A.G. Orfanos, I.D. Manariotis, T. Tatarchuk, L. Sellaoui, A. Bonilla-Petriciolet, A. Mittal, A. Núñez-Delgado, Removal of caffeine, nicotine and amoxicillin from (waste)waters by various adsorbents. A review, Journal of Environmental Management, 261, 110236, 2020. doi :10.1016/j.jenvman.2020.110236.
  • C. Miossec, L. Lanceleur, M. Monperrus, Multi-residue analysis of 44 pharmaceutical compounds in environmental water samples by solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry, Journal of Separation Science, 42, 1853–1866, 2019. doi:10.1002/jssc.201801214.
  • P.J. Phillips, S.G. Smith, D.W. Kolpin, S.D. Zaugg, H.T. Buxton, E.T. Furlong, K. Esposito, B. Stinson, Pharmaceutical formulation facilities as sources of opioids and other pharmaceuticals to wastewater treatment plant effluents, Environmental Science and Technology, 44, 4910–4916, 2010. doi:10.1021/es100 356f.
  • J.O. Tijani, O.O. Fatoba, O.O. Babajide, L.F. Petrik, Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review, Environmental Chemistry Letters, 14, 27–49, 2016. doi:10.1007/s10311-015-0537-z.
  • N. Delgado, A. Navarro, D. Marino, G.A. Peñuela, A. Ronco, Removal of pharmaceuticals and personal care products from domestic wastewater using rotating biological contactors, International Journal of Environmental Science and Technology, 16, 1–10, 2019. doi:10.1007/s13762-018-1658-2.
  • Yiruhan, Q.J. Wang, C.H. Mo, Y.W. Li, P. Gao, Y.P. Tai, Y. Zhang, Z.L. Ruan, J.W. Xu, Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao, Environmental Pollution, 15, 2350–2358, 2010. doi:10.1016/j.envpol.2010.03.019.
  • H. Wang, N. Wang, B. Wang, Q. Zhao, H. Fang, C. Fu, C. Tang, F. Jiang, Y. Zhou, Y. Chen, Q. Jiang, Antibiotics in Drinking Water in Shanghai and Their Contribution to Antibiotic Exposure of School Children, Environmental Science and Technology, 50(5), 2692–2699, 2016. doi:10.1021/acs.est.5b05749.
  • B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring, Water Research, 72, 3–27, 2015. doi:10.1016/j.watres.2014 .08.053.
  • I. Ali, M. Asim, T.A. Khan, Low cost adsorbents for the removal of organic pollutants from wastewater, Journal of Environmental Management, 113, 170–183, 2012. doi:10.1016/j.jenvman.2012.08.028.
  • A.M. Aljeboree, A. Noor Alshirifi, Oxidative coupling of Amoxicillin using 4-Aminoantipyrine: Stability and higher sensitivity, Journal of Physics: Conference Series, 1294, 052001, 2019. doi:10.1088/1742-6596/ 1294/5/052001.
  • L. Liu, Q. Wang, H. Lin, R. Das, S. Wang, H. Qi, J. Yang, Y. Xue, D. Mao, Y. Luo, Amoxicillin Increased Functional Pathway Genes and Beta-Lactam Resistance Genes by Pathogens Bloomed in Intestinal Microbiota Using a Simulator of the Human Intestinal Microbial Ecosystem, Frontiers in Microbiology, 11, 1–14, 2020. doi:10.3389/fmicb.2020.01213.
  • H. Mıhçıokur, Aerobik granüler aktif çamur ile bazı tıbbi ilaçların biyosorpsiyonu. Doktora Tezi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2014.
  • F. Stuer-Lauridsen, M. Birkved, L.P. Hansen, H.-C. Lützhøft, B. Halling-Sørensen, Environmental Risk Assessment of Human Pharmaceuticals in Denmark after Normal Therapeutic Use, Chemosphere, 40, 783–793, 2000. doi:10.1016/S0045-6535(99)00453-1.
  • S.C. Council, Environmentally Classified, 2015.
  • H. Mihciokur, M. Oguz, Removal of oxytetracycline and determining its biosorption properties on aerobic granular sludge, Environmental Toxicology and Pharmacology, 46, 174–182, 2016. doi:10.1016/j.etap . 2016.07.017.
  • M. Topal, G. Uslu, E.I. Arslan Topal, E. Öbek, Antibiyotiklerin tespiti ve arıtılması, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 29 (2) 185–199, 2013.
  • M. Homayoonfal, M.R. Mehrnia, Amoxicillin separation from pharmaceutical solution by pH sensitive nanofiltration membranes, Separation and Purification Technology, 130, 74–83, 2014. doi:10.10 16/j.seppur.2014.04.009.
  • M. Gholami, R. Mirzaei, R.R. Kalantary, A. Sabzali, F. Gatei, Performance evaluation of reverse osmosis technology for selected antibiotics removal from synthetic pharmaceutical wastewater, Iranian Journal of Environmental Health Science and Engineering, 9, 10–12, 2012. doi:10.1186/1735-2746-9-19.
  • E.M. Cuerda-Correa, M.F. Alexandre-Franco, C. Fernández-González, Advanced oxidation processes for the removal of antibiotics from water. An overview, Water, 12(1), 102, 2020. doi:10.3390/w12010102.
  • X. Wang, A. Wang, J. Ma, Visible-light-driven photocatalytic removal of antibiotics by newly designed C3N4@MnFe2O4-graphene nanocomposi tes, Journal of Hazardous Materials, 336, 81–92, 2017. doi:10.1016/j.jhazmat .2017.04.012.
  • M.L. Tran, C.C. Fu, R.S. Juang, Removal of metronidazole and amoxicillin mixtures by UV/TiO2 photocatalysis: an insight into degradation pathways and performance improvement, Environmental Science and Pollution Research, 26, 11846–11855, 2019. doi:10.1007/s11356-019-04683-4.
  • H. Çağlar Yılmaz, E. Akgeyik, S. Bougarrani, M. El Azzouzi, S. Erdemoğlu, Photocatalytic degradation of amoxicillin using Co-doped TiO2 synthesized by reflux method and monitoring of degradation products by LC–MS/MS, Journal of Dispersion Science and Technology, 41, 414–425, 2020. doi:10 .1080/01932691.2019.1583576.
  • R. Kıdak, Ş. Doğan, Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water, Ultrasonics Sonochemistry, 40, 131–139, 2018. doi:10.1016/j.u ltsonch.2017.01.033.
  • D. Balarak, F.K. Mostafapour, E. Bazrafshan, T.A. Saleh, Studies on the adsorption of amoxicillin on multi-wall carbon nanotubes, Water Science and Technology, 75, 1599–1606, 2017. doi:10.2166/ws t.2017.025.
  • D.R. Lima, E.C. Lima, C.S. Umpierres, P.S. Thue, G.A. El-Chaghaby, R.S. da Silva, F.A. Pavan, S.L.P. Dias, C. Biron, Removal of amoxicillin from simulated hospital effluents by adsorption using activated carbons prepared from capsules of cashew of Para, Environmental Science and Pollution Research, 26, 16396–16408, 2019. doi:10.1007/s11 356-019-04994-6.
  • C. Zwiener, Occurrence and analysis of pharmaceuticals and their transformation products in drinking water treatment, Analytical and Bioanalytical Chemistry, 387, 1159–1162, 2020. doi :10.1007/s00216-006-0818-2.
  • L. Molina-García, A. Ruiz-Medina, M.L. Fernández-De Córdova, A novel multicommuted fluorimetric optosensor for determination of resveratrol in beer, Talanta, 83, 850–856, 2011. doi:10.1016/j.talanta.2010.10.033.
  • S. Sarıbuğa, Manyetik nanopartiküllerin analitik incelenmesi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2014.
  • D. Öztürk, H. Mihçiokur, Production of innovative magnetic adsorbent Fe3O4@PEI®Tween 85 and removal of oxytetracycline from aqueous media, Separation Science and Technology, 1–13, 2021. doi:10.1080/01496395.2021.1962911.
  • Z.Y. Lu, Y.L. Ma, J.T. Zhang, N.S. Fan, B.C. Huang, R.C. Jin, A critical review of antibiotic removal strategies: Performance and mechanisms, Journal of Water Process Engineering, 38, 101681, 2020. doi:10.1016/j.jwpe.2020.101681.
  • S.E. Moradi, Highly efficient removal of Amoxicillin from water by magnetic graphene oxide adsorbent, Univ, 60(74), 41-48, 2015.
  • I. Anastopoulos, I. Pashalidis, A.G. Orfanos, I.D. Manariotis, T. Tatarchuk, L. Sellaoui, A. Bonilla-Petriciolet, A. Mittal, A. Núñez-Delgado, Removal of caffeine, nicotine and amoxicillin from (waste)waters by various adsorbents. A review, Journal of Environmental Management, 261, 2020. doi:10.1016/j.jenvman.2020.110236.
  • C. Homsirikamol, N. Sunsandee, U. Pancharoen, K. Nootong, Synergistic extraction of amoxicillin from aqueous solution by using binary mixtures of Aliquat 336, D2EHPA and TBP, Separation and Purification Technology, 162, 30–36, 2016. doi:10.1016/j.seppu r.2016.02.003.
  • E. Tümay Özer, Aktif karbon ile sulu çözeltilerden Amoksisilin giderimi: Kinetik ve denge çalışmaları, Avrupa Bilim ve Teknoloji Dergisi, 833–839, 2020. doi:10.31590/ejosat.697040.
  • N. Rafiei, A. Fatehizadeh, M. Mehdi, H. Reza, A. Ebrahimi, E. Taheri, T.M. Aminabhavi, Application of UV / chlorine processes for the DR83 : 1 degradation from wastewater : Effect of coexisting anions, Journal of Environmental Management, 297, 113349, 2021. doi:10.1016/j.jenvman.2021.113349.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi