Katı oksit yakıt pillerinde elektrolit-elektrot arayüzey iyileştirilmesi

Bu çalışmada şerit döküm yöntemi ile imal edilen katı oksit yakıt pili (KOYP) elektrolit tabakaları metal bir elek ile birlikte farklı izostatik pres basınçları (10-60 MPa) altında preslenerek elektrolit üzerinde yüzey desenleri oluşturulmuştur. İzostatik pres basıncının etkileri; profilometre, performans, empedans ve mikroskop analizleri ile incelenmiştir. Elektrokimyasal ölçümler desenli elektrolite sahip bütün hücrelerin referans hücreden daha yüksek bir performans ortaya koyduğunu göstermiştir. Gerçekleştirilen analizler hücre performansındaki iyileşmenin desenleme ile artan elektrolit-elektrot arayüzey alanlarının yanı sıra lokal olarak azalan elektrolit kalınlığının da bir sonucu olduğunu ortaya çıkarmıştır. 0.373 W/cm2 ile en yüksek performansı ise 30 MPa basınçta preslenen desenli elektrolite sahip hücre sergilemiştir. Referans hücre için bu değer 0.320 W/cm2 olarak ölçülmüştür. Daha yüksek pres basınçlarında ise artan desen derinliğine bağlı olarak özellikle katot bölgesinde elektrolite kadar uzanan çatlaklar tespit edilmiştir. Bu çatlaklar, arayüzey alanındaki artışla artması beklenen elektrokimyasal reaksiyon bölgelerindeki iyileşmeyi sınırlayarak performans kayıplarına neden olmuştur.

Enhancement of electrolyte-electrode interfaces in solid oxide fuel cells

In this study, solid oxide fuel cell (SOFC) electrolyte layers produced by tape casting method are pressed together with a metal mesh under different isostatic press pressures (10-60 MPa) to form surface patterns on the electrolyte. Effects of isostatic press pressure are investigated via profilometer, performance, impedance and microscopic analyses. Electrochemical measurements show that all cells with patterned electrolyte outperform the reference cell. The analyzes performed reveal that the improvement in cell performance is a result of the locally reduced electrolyte thickness as well as the increased electrolyte-electrode interface areas with surface patterning. The cell with patterned electrolyte pressed at 30 MPa pressure shows the highest peak performance of 0.373 W/cm2. For the reference cell, this value is measured as 0.320 W/cm2. At higher pressing pressures, cracks extending to the electrolyte are detected, especially in the cathode region, depending on the increased pattern depth. These cracks cause performance losses by limiting the improvement in the electrochemical reaction zones, which are expected to increase with the increase in the interfacial areas.

___

  • M. Brown, S. Primdahl and M. Mogensen, Structure/performance relations for Ni/yttria‐stabilized zirconia anodes for solid oxide fuel cells. Journal of The Electrochemical Society, 147, 475-485, 2000. https://doi.org/10.1149/1.1393220.
  • M. Kishimoto, H. Iwai, M. Saito and H. Yoshida, Characteristic length of oxide-ion conduction for prediction of active thickness in SOFC anode. ECS Transactions, 57, 2515-2525, 2013. https://doi.org/10.1149/05701.2515ecst.
  • K. Yuan, Y. Ji and J.N. Chung, Physics-based modeling of a low-temperature solid oxide fuel cell with consideration of microstructure and interfacial effects. Journal of Power Sources, 194, 908-919, 2009. https://doi.org/10.1016/j.jpowsour.2009.05.045.
  • T. Kenjo, S. Osawa and K. Fujikawa, High temperature air cathodes containing ion conductive oxides. Journal of The Electrochemical Society, 138, 349-355, 1991. https://doi.org/10.1149/1.2085587.
  • A. Konno, H. Iwai, M. Saito and H. Yoshida, Effect of characteristic lengths of electron, ion, and gas diffusion on electrode performance and electrochemical reaction area in a solid oxide fuel cell. Heat Transfer, 41, 700-718, 2012. https://doi.org/10.1002/htj.20373.
  • H. Dai, S. He, H. Chen and L. Guo, A novel method of modifying electrolyte surface at mesoscale for intermediate-temperature solid oxide fuel cells. Ceramics International, 42, 2045-2050, 2016. https://doi.org/10.1016/j.ceramint.2015.09.057.
  • X. M. Wang, C. J. Li, C. X. Li and G. J. Yang, Microstructure and electrochemical behavior of a structured electrolyte/LSM-cathode interface modified by flame spraying for solid oxide fuel cell application. Journal of Thermal Spray Technology, 19, 311-316, 2010. https://doi.org/10.1007/s11666-009-9373-7.
  • C. Lee, S. S. Shin, J. Choi, J. Kim, J. W. Son, M. Choi and H. H. Shin, A micro-patterned electrode/electrolyte interface fabricated by soft-lithography for facile oxygen reduction in solid oxide fuel cells. Journal of Materials Chemistry A, 8, 16534-16541, 2020. https://doi.org/10.1039/D0TA03997G.
  • Y. Xu, F. Tsumori, T. Osada and H. Miura, Improvement of solid oxide fuel cell by imprinted micropatterns on electrolyte. Micro & Nano Letters, 8, 571-574, 2013. https://doi.org/10.1049/mnl.2013.0310.
  • F. Tsumori, Y. Xu, Y. Tanaka, T. Osada and H. Miura, Micrometer-scale imprinting process for ceramic sheet from powder compound material. Procedia Engineering, 81, 1433-1438, 2014. https://doi.org/10.1016/j.proeng.2014.10.169.
  • A. Konno, H. Iwai, K. Inuyama, A. Kuroyanagi, M. Saito, H. Yoshida, K. Kodani and K. Yoshikata, Mesoscale-structure control at anode/electrolyte interface in solid oxide fuel cell. Journal of Power Sources, 196, 98-109, 2011. https://doi.org/10.1016/j.jpowsour.2010.07.025.
  • H. Iwai, A. Kuroyanagi, M. Saito, A. Konno, H. Yoshida, T. Yamada and S. Nishiwaki, Power generation enhancement of solid oxide fuel cell by cathode–electrolyte interface modification in mesoscale assisted by level set-based optimization calculation. Journal of Power Sources, 196, 3485-3495, 2011. https://doi.org/10.1016/j.jpowsour.2010.12.024
  • N. M. Farandos, L. Kleiminger, T. Li, A. Hankin and G. H. Kelsall, Three-dimensional Inkjet Printed Solid Oxide Electrochemical Reactors. I. Yttria-stabilized Zirconia Electrolyte. Electrochimica Acta, 213, 324-331, 2016. https://doi.org/10.1016/j.electacta.2016.07.103.
  • F. Salari, A. B. Najafabadi, M. Ghatee and M. Golmohammad, Hybrid additive manufacturing of the modified electrolyte-electrode surface of planar solid oxide fuel cells. International Journal of Applied Ceramic Technology, 17, 1554-1561, 2020. https://doi.org/10.1111/ijac.13527.
  • J. A. Cebollero, R. Lahoz, M. A. Laguna-Bercero, J. I. Peña, A. Larrea and V. M. Orera, Characterization of laser-processed thin ceramic membranes for electrolyte-supported solid oxide fuel cells. International Journal of Hydrogen Energy, 42, 13939-13948, 2017. https://doi.org/10.1016/j.ijhydene.2016.12.112.
  • W. P. Pan, Z. Lü, Y. H. Zhang, X. Q. Huang, B. Wei, Z. H. Wang and W. H. Su, Improved electrodes/electrolyte interfaces for solid oxide fuel cell by using dual-sized powders in electrolyte slurry. Fuel Cells, 12, 732-738, 2012. https://doi.org/10.1002/fuce.201100205.
  • H. Seo, H. Iwai, M. Kishimoto, C. Ding, M. Saito and H. Yoshida, Microextrusion printing for increasing electrode–electrolyte interface in anode-supported solid oxide fuel cells. Journal of Power Sources, 450, 2020, 227682. https://doi.org/10.1016/j.jpowsour.2019.227682.
  • Y. Zhang, G. Cai, Y. Gu, L. Ge, Y. Zheng, H. Chen and L. Guo, Modifying the electrode-electrolyte interface of anode supported solid oxide fuel cells (SOFCs) by laser-machining. Energy Conversion and Management, 171, 1030-1038, 2018. https://doi.org/10.1016/j.enconman.2018.06.044.
  • I. Jang, C. Kim, S. Kim and H. Yoon, Fabrication of thin films on an anode support with surface modification for high-efficiency intermediate-temperature solid oxide fuel cells via a dip-coating method. Electrochimica Acta, 217, 150-155, 2016. https://doi.org/10.1016/j.electacta.2016.09.065.