Galyum nitrür koplanar dalga kılavuzu teknolojisinde kompakt Wilkinson güç bölücü tasarımı ve üretimi

Bu makalede, ultra-kompakt mikrodalga tektaş Wilkinson güç bölücü entegre devre tasarımı X-bant uygulamaları için gerçekleştirilmiştir. Tasarımın boyutunun küçültebilmesinde minyatürleştirme tekniği kullanılarak, teorik olarak hesaplamaları anlatılmıştır. Teorik analizlerin tamamlanmasından sonra, tasarımın serim tasarımı yapılarak elektromanyetik benzetimleri gerçekleştirilmiştir. Önerilen devre tasarımı, galyum nitrür tümdevre pasif devre teknolojisi kullanılarak üretilmiştir. Ölçüm sonuçlarına göre, giriş ve çıkış (I/O) yansıma katsayılarının 8-12 GHz frekans bandı içerisinde -15 dB’den daha iyi olduğu görülmüştür. Ek olarak, X-bantta (8-12 GHz) araya iletim katsayısının -4 dB’den düşük olarak ölçülmüştür. Ayrıca, elde edilen ölçüm sonuçlarına göre prototipin 15-dB bant genişliği %40 olarak hesaplanmıştır ve çalışma frekans bandı içerisinde çıkış portları arasındaki izolasyonun -15 dB’den daha iyi olduğu görülmüştür. Ayrıca, önerilen Wilkinson güç bölücü tasarımının boyutu, ?-tipi minyatürleştirme tekniğinde tümdevre devre elemanları kullanılarak 700 m  700 m (0.0023 λg x 0.0023 λg, burada λg merkez frekanstaki (10 GHz) dalga boyu değeridir) boyutlarına kadar düşürülmüştür. Geliştirilen güç bölücünün ölçüm sonuçlarına göre, minyatür boyutuna rağmen, elektriksel performansında herhangi bir kötüleşme olmadan geniş bantlı bir karakteristik sergilediği görülmüştür.

Design and fabrication of compact Wilkinson power divider on gallium nitride coplanar technology

In this article, an ultra-compact monolithic microwave integrated Wilkinson power divider (WPD) was accomplished for X-band applications. So as to reduce the size of the design, the miniaturization technique was illustrated with the theoretical analysis. After the theoretical analysis, the layout of the design and electromagnetic simulation were performed. The proposed Wilkinson power divider was manufactured with utilizing gallium nitride integrated passive device technology. In the measurement results, it was seen that the input and output (I/O) reflection coefficients were better than -15 dB in the frequency bandwidth of 8-12 GHz. In addition, the transmission coefficient was measured less than -4 dB in the X-band (8-12 GHz). Moreover, the 15-dB fractional bandwidth is 40% and the isolation between the outputs are better than -15 dB. The size of the proposed Wilkinson power was reduced to the dimensions of 700 m  700 m (0.0023 λg x 0.0023 λg, where λg is the wavelength value at the center frequency (10 GHz)), as ?-type miniaturization technique was employed with monolithic lumped components. Beside its miniaturized size, the proposed power divider exhibits broadband characteristics while having any degradation in the electrical performance.

___

  • Y. Wang, X. Y. Zhang, F. X. Liu and J. C. Lee, A compact bandpass Wilkinson power divider with ultra-wide band harmonic suppression. IEEE Microwave and Wireless Components Letters, 27(10), 888-890, 2017. https://doi.org/10.1109/LMWC.2017.2745484.
  • F. Khajeh-Khalili, M. A. Honarvar, A. Dadgarpour, B. S. Virdee and T. A. Denidni, Compact tri-band Wilkinson power divider based on metamaterial structure for Bluetooth, WiMAX, and WLAN applications. Journal of electromagnetic waves and applications, 33(6), 707-721, 2019. https://doi.org/10 .1080/09205071.2019.1575287.
  • A. M. Darwish, A. A. Ibrahim, J. X. Qiu, E. Viveiros, and H. Hung, A Broadband 1-to-n power divider/combiner with isolation and reflection cancellation. IEEE Transactions on Microwave Theory and Techniques, 63(7), 2253-2263, 2015. https://doi .org/10.1109/TMTT.2015.2431690.
  • D. M. Pozar, Microwave engineering. Wiley, New York (NY), 2012.
  • P. Rostami and S. Roshanı, A miniaturized dual band Wilkinson power divider using capacitor loaded transmission lines. AEU-International Journal of Electronics and Communications, 90, 63-68, 2018. https://doi.org/10.1016/j.aeue.2018.04.014.
  • C. H. Tseng and C. H. Wu, Compact planar Wilkinson power divider using π-equivalent shunt-stub-based artificial transmission lines. Electronics Letters, 46(19), 1327-1328, 2010. https://doi.org/10.1049/el.2010.219 4.
  • S. Kaijun, Extremely compact ultra-wideband power divider using hybrid slotline/microstrip-line transition. Electron Letters, 51(24), 2014-2015, 2015. https://doi .org/10.1049/el.2015.2924.
  • C. L. Chang and C. H. Tseng, Compact Wilkinson power divider using two-section asymmetrical T-structures. Electron Letters, 49, 546–547, 2013. https://doi.org/10.1049/el.2013.0366.
  • Z. X. Du, X. Y. Zhang, K. X., Wang, H. L. Kao, X. L. Zhao and X. H. Li, Unequal Wilkinson power divider with reduced arm length for size miniaturization. IEEE Transactions on Components, Packaging and Manufacturing Technology, 6(2), 282-289, 2016. https://doi.org/10.1109/TCPMT.2015.2513763.
  • R. Mirzavand, M. M. Honari, A. Abdipour, and G. Moradi, Compact microstrip Wilkinson power dividers with harmonic suppression and arbitrary power division ratios. IEEE Transaction Microwave Theory Techniques, 61, 61–68, 2013. https://doi.org/10.1109/ TMTT.2012.2226054.
  • Z. Guo and Y. Yang, A novel compact Wilkinson power divider with controllable harmonic suppression and simple structure. Journal of Electromagnetic Waves and Applications, 32(5), 601–608, 2018. http s://doi.org/10.1080/09205071.2017.1400926.
  • Q. Li, Y. Zhang and C. T. M. Wu, High-selectivity and miniaturized filtering Wilkinson power dividers integrated with multimode resonators. IEEE Transaction of Components Packaging and Manu facturing Technology, 7, 1990–1997, 2017. https://doi .org/10.1109/TCPMT.2017.2706958.
  • J. Han and X. Liao, Miniaturization of a broadband power divider for X-band application based on GaAs technology. Microwave Optical Technologies Letter, 59(6), 1427-1431, 2017. https://doi.org/10.1002/mop. 30557.
  • Y. Jiang, K. Hu, L. Feng, H. Zhang, Y. Shi, W. Tang, and X. Yu, Ultra wideband lumped Wilkinson power divider on gallium arsenide integrated passive device technology. International Journal of RF and Microwave Computer‐Aided Engineering, 31(12): e22898, 2021.h ttps://doi.org/10.1002/mmce.22898.
  • T. Okan, A Wideband conductor backed coplanar waveguide fed ımplantable antenna operable in different tissues for biotelemetry applications. Radioengineering, 30(2), 335-431, 2021. https://doi .org/10.13164/re.2021.0335.
  • J. V. Gaitonde and R. B. Lohani, Analysis of wide-bandgap material OPFET UV detectors for high dynamic range imaging and communication applications. Communications and Network, 11(4): 83-117, 2019. https://doi.org/10.4236/cn.2019.114007.
  • M. P. Mikhailova, K. D. Moiseev and Y. P. Yakovlev, Discovery of III–V semiconductors: physical properties and application. Semiconductors, 53(3), 273-290, 2019. https://doi.org/10.1134/S10637826 19030126