Al50Si25B25 alaşımının mikroyapı, termal ve mekanik özelliklerinin incelenmesi

Bu çalışmada Al50Si25B25 alaşımı ark ergitme yöntemi ile külçe olarak üretilmiştir. Al50Si25B25 alaşımının faz analizi X-ışını difraksiyonu (XRD), morfolojik özellikleri taramalı elektron mikroskobu (SEM) ile termal özellikleri ise diferansiyel termal analiz (DTA) ve diferansiyel taramalı kalorimetre (DSC) ile araştırılmıştır. Alaşımın mekanik özelliği Vickers mikrosertlik (HV) testi ile incelenmiştir. XRD analizinden, Bor (B) ve Silisyum (Si) atomlarının Al kafesi içerisinde çözünerek α-Al(B,Si) katı çözeltisini oluşturduğu tespit edilmiştir. XRD ve SEM sonuçları, alaşımın mikro yapısının, α-Al(B,Si) katı çözeltisi, AlB2 intermetalik fazı ve Si fazlarından oluştuğunu göstermiştir. SEM sonuçları alaşımların morfolojik yapısının dendritik ve ötektik yapılar şeklinde oluştuğunu göstermiştir. DSC ve DTA sonuçları, α-Al(B,Si) fazının ergimesini ifade eden bir endotermik pik göstermiştir. Alaşımın mikro sertlik değeri oda sıcaklığında 108±15 HV olarak ölçülmüştür. Bu değer termal işlem sonucu artmış ve 300 ºC’de 232±9 HV değerine çıkmıştır. 300 ºC’den daha yüksek sıcaklıklarda alaşımın mikrosertlik değerinin azaldığı gözlenmiştir.

Investigation of microstructural, thermal and mechanical properties of Al50Si25B25 alloy

In this study, Al50Si25B25 alloy was produced as ingot by arc melting method. The microstructure of the Al50Si25B25 alloy was investigated by X-ray diffraction (XRD), the morphological properties were investigated by scanning electron microscopy (SEM), and its thermal properties were investigated by differential thermal analysis (DTA) and differential scanning calorimetry (DSC). The mechanical properties of the alloy were investigated by Vickers microhardness (HV) test.The XRD result showed that B and Si atoms dissolved in the Al lattice to form the intermetallic phase of the α-Al (B, Si) solid solution. XRD and SEM results showed that the microstructure of the alloys consisted of α-Al(B,Si) solid solution, Si and AlB2 intermetallic phases. SEM results showed that the morphological structure of the alloys formed as dendritic and eutectic structures. DSC and DTA results showed an endothermic peak indicating the melting of the α-Al(B,Si) phase. The microhardness value of the alloy was measured as 108±15 HV at room temperature. This value increased as a result of the heat treatment and increased to 232±9 HV at 300 ºC. It was observed that the microhardness value of the alloy decreased at temperatures higher than 300 ºC.

___

  • J. Milligan, R. Vintila and M. Brochu, Nanocrystalline eutectic Al–Si alloy produced by cryomilling, Materials Science and Engineering: A, 508, 43–49, 2009. https://doi.org/10.1016/j.msea.2008.12.017.
  • J. Chen, R. Lengsdorf, H. Henein, D.M. Herlach, U. Dahlborg and M. Calvo-Dahlborg, Microstructure evolution in undercooled Al–8wt%Fe melts: Comparison between terrestrial and parabolic flight conditions, Journal of alloys and compounds, 556, 243–251, 2013. https://doi.org/10.1016/j.jallcom.2012.11. 182.
  • F.C.R. Hernandez, J. M. H. Ramírez and R. Mackay, Al-Si alloys: automotive, aeronautical, and aerospace applications, Springer, 2017. https://doi.org/10.1007/ 978-3-319-58380-8.
  • A. M. A. Mohamed, A. M. Samuel, F. H. Samuel and H. W. Doty, Influence of additives on the microstructure and tensile properties of near-eutectic Al–10.8%Si cast alloy, Materials & Design, 30, 3943–3957, 2009. https://doi.org/10.1016/j.matdes.2009. 05.042.
  • P. Ma, D. Zhang, L. Zhuang and J. Zhang, Effect of alloying elements and processing parameters on the Portevin-Le Chatelier effect of Al-Mg alloys, International Journal of Minerals, Metallurgy, and Materials, 22, 175–183, 2015. https://doi.org/10.1007/ s12613-015-1058-2.
  • O. Uzun, T. Karaaslan, M. Gogebakan ve M. Keskin, Hardness and microstructural characteristics of rapidly solidified Al–8–16wt.%Si alloys, Journal of Alloys and Compounds, 376, 149–157, 2004. https://doi.org/ 10.1016/j.jallcom.2004.01.017.
  • Y.Birol, A novel Al–Ti–B alloy for grain refining Al–Si foundry alloys, Journal of Alloys and Compounds, 486, 219–222, 2009. https://doi.org/10.1016/j.jallcom. 2009.07.064.
  • M. Chemingui, G. Mesmacque and A. W. Kolsi, Effect of heat treatment on plasticity of Al–Zn–Mg alloy: Microstructure evolution and mechanical properties, Physics Procedia, 2, 1167–1174, 2009. https://doi.org/ 10.1016/j.phpro.2009.11.079.
  • M. Gögebakan, O. Uzun, T. Karaaslan ve M.Keskin, Rapidly solidified Al–6.5 wt.%Ni alloy, Journal of Materials Processing Technology, 142, 87–92, 2003. https://doi.org/10.1016/S0924-0136(03)00466-7.
  • M. Göğebakan ve B. Avar, Structural evolutions of the mechanically alloyed Al70Cu20Fe10 powders, Pramana - Journal of Physics, 77, 735–747, 2011. https://doi.org/ 10.1007/s12043-011-0091-6.
  • H. Kaya, U. Böyük, E.Çadırlı ve N.Maraşlı, Measurements of the microhardness, electrical and thermal properties of the Al–Ni eutectic alloy, Materials & Design, 34, 707–712, 2012. https://doi.org/ 10.1016/j.matdes.2011.05.030.
  • B. Cantor, I.T.H. Chang, P.Knight and A.J.B.Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A, 375, 213–218, 2004. https://doi.org/ 10.1016/j.msea.2003.10.257.
  • M. Gögebakan, Mechanical properties of AlYNi amorphous alloys, Journal of Light Metals, 2, 271–275, 2002. https://doi.org/10.1016/S1471-5317(03)00011-7.
  • M. Gögebakan, The effect of Si addition on crystallization behavior of amorphous Al-Y-Ni alloy, Journal of materials engineering and performance, 13, 504–508, 2004. https://doi.org/10.1361/105994904191 71.
  • H. Okamoto, Phase diagrams for binary alloys, ASM international Materials Park, OH, 2000. ISBN-13: 978-1-61503-046-0. ISBN-13: 978-1-61503-046-0.
  • O. N. Carlson, The Al-B (Aluminum-Boron) system, Bulletin of Alloy Phase Diagrams, vol. 11, pp. 560-566, 1990. https://doi.org/10.1007/BF02841717.
  • Warmuzek, Malgorzata, Aluminum-silicon casting alloys: an atlas of microfractographs. ASM international, 2004. ISBN: 978-0-87170-794-9.
  • E. Karaköse ve M.Keskin, Microhardness and morphologic characteristics of rapidly solidified Al-12Si-8Ni-5Nd alloy, Metals and Materials International, 16, 383–391, 2010. https://doi.org/10. 1007/s12540-010-0607-5.
  • M. Uludağ, Ş.Yazman, B.Bakırcıoğlu ve D.Dışpınar, Al-Si Alaşımlarında Si Morfolojisinin İşlenebilirliğe Etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 21, 381–385, 2014. https://doi.org/10.5505/ pajes.2015.66933.
  • E. Karakoese and M. Keskin, Effect of solidification rate on the microstructure and microhardness of a melt-spun Al–8Si–1Sb alloy, Journal of Alloys and Compounds, 479, 230–236, 2009. https://doi.org/ 10.1016/j.jallcom. 2009.01.006.
  • Z. L. Zhao, S. Q. Yin, Y. D. Liu, Z. Q. Zhang and R. F. Ren, Microstructures and corrosion resistance of as‐cast aluminum‐10 wt.% silicon and aluminum‐20 wt.% silicon alloys, Material wissenschaft und Werkstofftechnik 50.9 (2019): 1124-1130. https://doi. org/10.1002/mawe.201800124.
  • T. Stefania, Optimization of A354 Al-Si-Cu-Mg alloy heat treatment: Effect on microstructure, hardness, and tensile properties of peak aged and overaged alloy, Metals 8.11 (2018): 961. https://doi. org /10. 3390/met 8110961.
  • X. Zeng, W. Liu, B. Xu, G. Shu and Q. Li, Microstructure and mechanical properties of Al–SiC nanocomposites synthesized by surface-modified aluminium powder, Metals, 8, 253, 2018. https://doi. org/10.3390/met8040253.
  • O. Prach, O. Trudonoshyn, P. Randelzhofer, С. Körner and K. Durst, Effect of Zr, Cr and Sc on the Al–Mg–Si–Mn high-pressure die casting alloys, Materials Science and Engineering: A, 759, 603–612, 2019. https://doi.org/10.1016/j.msea.2019.05.038.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi