Persülfatın Heterojen Aktivasyonu için Aktif Karbon Destekli Kobalt-Bazlı Katalizör Kullanılarak Fenoprofenin Degradasyonu

Bu çalışma aktif karbon destekli kobalt-bazlı katalizör (Co-AC) ile persülfatın (PS) heterojen aktivasyonu yoluyla fenoprofenin (FNP) degradsyonununu araştırmayı amaçlamaktadır. FNP degradasyonuna PS konsantrasyonu, Co-AC dozajı, başlangıç pH’sı, ve anyonların etkileri incelenmiştir. 120 dk temas süresi, 0.75 g/L Co-AC, 2 mM PS, doğal pH ve 25 °C optimum işletme koşullarında FNP’nin tam degradasyonu ve mineralizasyonu sağlanmıştır. FNP degradasyonunun pseudo-birinci dereceden kinetik modele en iyi uyduğu bulunmuştur. Belirli alkoller kullanılarak geçekleştirilen söndürme çalışmaları ile degradasyonda etkili reaktif oksijen türleri tespit edilmiştir ve SO4•−‘ün dominant radikal olduğu bulunmuştur. İlaveten, NO3−, SO42− ve PO43− anyonlarının varlığının FNP degradasyonunu inhibe ettiği belirlenmiştir. Elde edilen bu sonuçlar sucul ortamlardan FNP degradasyonu için Co-AC/PS sisteminin umut vaat eden etkili bir proses olduğunu göstermektedir.

Degradation of Fenoprofen Using Activated Carbon Supported Cobalt-Based Catalyst for Heterogeneous Activation of Persulfate

This study aims to investigate the degradation of fenoprofen (FNP) by heterogeneous activation of persulfate (PS) with the activated carbon supported cobalt-based catalyst (Co-AC). The effects of PS concentration, Co-AC dosage, initial pH, and anions on FNP degradation were investigated. FNP was completely degraded and mineralized under optimum operating conditions of 120 min contact time, 0.75 g/L Co-AC, 2 mM PS, natural pH and 25 °C. FNP degradation was found to best fit the pseudo-first order kinetic model. With quenching studies using certain alcohols, the reactive oxygen species effective in degradation were determined and SO4•− was found to be the dominant radical. In addition, the presence of NO3−, SO42− and PO43− anions were found to inhibit FNP degradation. These results indicate that the Co-AC/PS system is a promising and effective process for the degradation of FNP from aquatic environments.

___

  • 1. Marinho, B.A., Suhadolnik, L., Likozar, B., Huš, M., Marinko, Ž., Čeh, M. Photocatalytic, electrocatalytic and photoelectrocatalytic degradation of pharmaceuticals in aqueous media: Analytical methods, mechanisms, simulations, catalysts and reactors. Journal of Cleaner Production, 343, 131061, 2022, doi:https://doi.org/10.1016/j.jclepro.2022.131061
  • 2. Ihsanullah, I., Khan, M.T., Zubair, M., Bilal, M., Sajid, M. Removal of pharmaceuticals from water using sewage sludge-derived biochar: A review. Chemosphere, 289, 133196, 2022, doi:https://doi.org/10.1016/j.chemosphere.2021.133196
  • 3. Shanavas, S., Haija, M.A., Singh, D.P., Ahamad, T., Roopan, S.M., Van Le, Q., Acevedo, R., Anbarasan, P.M. Development of high efficient Co3O4/Bi2O3/rGO nanocomposite for an effective photocatalytic degradation of pharmaceutical molecules with improved interfacial charge transfer. Journal of Environmental Chemical Engineering, 10(2), 107243, 2022, doi:https://doi.org/10.1016/j.jece.2022.107243
  • 4. Zhang, H., Li, H., Wang, Z., Li, B., Cheng, X., Cheng, Q. Synthesis of Magnetic CoFe₂O₄ Nanoparticles and Their Efficient Degradation of Diclofenac by Activating Persulfate via Formation of Sulfate Radicals. J Nanosci Nanotechnol, 18(10), 6942-6948, 2018, doi:https://doi.org/10.1166/jnn.2018.15800
  • 5. Duan, X., Niu, X., Gao, J., Wacławek, S., Tang, L., Dionysiou, D.D. Comparison of sulfate radical with other reactive species. Current Opinion in Chemical Engineering, 38, 100867, 2022, doi:https://doi.org/10.1016/j.coche.2022.100867
  • 6. Wu, M., Fu, K., Deng, H., Shi, J. Cobalt tetracarboxyl phthalocyanine-manganese octahedral molecular sieve (OMS-2) as a heterogeneous catalyst of peroxymonosulfate for degradation of diclofenac. Chemosphere, 219, 756-765, 2019, doi:https://doi.org/10.1016/j.chemosphere.2018.12.030
  • 7. Li, Z., Yang, Q., Zhong, Y., Li, X., Zhou, L., Li, X., Zeng, G. Granular activated carbon supported iron as a heterogeneous persulfate catalyst for the pretreatment of mature landfill leachate. RSC Advances, 6(2), 987-994, 2016, doi: https://doi.org/10.1039/C5RA21781D
  • 8. Chen, L., Ji, H., Qi, J., Huang, T., Wang, C.-C., Liu, W. Degradation of acetaminophen by activated peroxymonosulfate using Co(OH)2 hollow microsphere supported titanate nanotubes: Insights into sulfate radical production pathway through CoOH+ activation. Chemical Engineering Journal, 406, 126877, 2021, doi:https://doi.org/10.1016/j.cej.2020.126877
  • 9. Xiao, S., Cheng, M., Zhong, H., Liu, Z., Liu, Y., Yang, X., Liang, Q. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review. Chemical Engineering Journal, 384, 123265, 2020, doi:https://doi.org/10.1016/j.cej.2019.123265
  • 10. Zhao, C., Zhong, S., Li, C., Zhou, H., Zhang, S. Property and mechanism of phenol degradation by biochar activated persulfate. Journal of Materials Research and Technology, 9(1), 601-609, 2020, doi:https://doi.org/10.1016/j.jmrt.2019.10.089
  • 11. Farghaly, D.A., Aboelwafa, A.A., Hamza, M.Y., Mohamed, M.I. Microemulsion for topical delivery of fenoprofen calcium: in vitro and in vivo evaluation. Journal of Liposome Research, 28(2), 126-136, 2018, doi: https://doi.org/10.1080/08982104.2017.1281951
  • 12. Mbhele, Z.E., Ncube, S., Madikizela, L.M. Synthesis of a molecularly imprinted polymer and its application in selective extraction of fenoprofen from wastewater. Environmental Science and Pollution Research 25(36), 36724-36735, 2018, doi: https://doi.org/10.1007/s11356-018-3602-x
  • 13. Silver, M., Selke, S., Balsaa, P., Wefer-Roehl, A., Kübeck, C., Schüth, C. Fate of five pharmaceuticals under different infiltration conditions for managed aquifer recharge. Science of The Total Environment, 642, 914-924, 2018, doi:https://doi.org/10.1016/j.scitotenv.2018.06.120
  • 14. Patrolecco, L., Capri, S., Ademollo, N. Occurrence of selected pharmaceuticals in the principal sewage treatment plants in Rome (Italy) and in the receiving surface waters. Environmental Science and Pollution Research, 22(8), 5864-5876, 2015, doi: https://doi.org/10.1007/s11356-014-3765-z
  • 15. Erdem, H., Erdem, M. Synthesis and characterization of a novel activated carbon–supported cobalt catalyst from biomass mixture for tetracycline degradation via persulfate activation. Biomass Conversion and Biorefinery, 12, 3513–3524, 2022, doi: https://doi.org/10.1007/s13399-020-00963-z
  • 16. Erdem, H. Aktif karbon destekli heterojen katalitik sistemlerde sülfat radikalleriyle farmasötik grubu bazı organik kirleticilerin kimyasal oksidasyonu. 2020.
  • 17. Wang, B., Li, Y.-n., Wang, L. Metal-free activation of persulfates by corn stalk biochar for the degradation of antibiotic norfloxacin: Activation factors and degradation mechanism. Chemosphere, 237, 124454, 2019, doi:https://doi.org/10.1016/j.chemosphere.2019.124454
  • 18. Li, Z., Wang, M., Jin, C., Kang, J., Liu, J., Yang, H., Zhang, Y., Pu, Q., Zhao, Y., You, M., Wu, Z. Synthesis of novel Co3O4 hierarchical porous nanosheets via corn stem and MOF-Co templates for efficient oxytetracycline degradation by peroxymonosulfate activation. Chemical Engineering Journal, 392, 123789, 2020, doi:https://doi.org/10.1016/j.cej.2019.123789
  • 19. Song, T., Gao, Y., Li, G., Chen, Y., Li, Q. The Kinetic Simulation of Persulfate Activation by Nano-Ferrosoferric Oxide. Catalysts, 2022, doi: https://doi.org/10.3390/catal12111353
  • 20. Xu, M., Li, J., Yan, Y., Zhao, X., Yan, J., Zhang, Y., Lai, B., Chen, X., Song, L. Catalytic degradation of sulfamethoxazole through peroxymonosulfate activated with expanded graphite loaded CoFe2O4 particles. Chemical Engineering Journal, 369, 403-413, 2019, doi:https://doi.org/10.1016/j.cej.2019.03.075
  • 21. Feng, Y., Song, Q., Lv, W., Liu, G. Degradation of ketoprofen by sulfate radical-based advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices. Chemosphere, 189, 643-651, 2017, doi:https://doi.org/10.1016/j.chemosphere.2017.09.109
  • 22. Wei, L., Li, J., Zhou, C., Song, B., Qin, F., Wang, W., Luo, H., Qin, D., Huang, C., Zhang, C., Yang, Y. Design of copper oxide and oxygen codoped graphitic carbon nitride activator for efficient radical and nonradical activation of peroxymonosulfate. Chinese Chemical Letters, 107893, 2022, doi:https://doi.org/10.1016/j.cclet.2022.107893
  • 23. Cai, C., Kang, S., Xie, X., Liao, C. Ultrasound-assisted heterogeneous peroxymonosulfate activation with Co/SBA-15 for the efficient degradation of organic contaminant in water. Journal of Hazardous Materials, 385, 121519-121519, 2020, doi:https://doi.org/10.1016/j.jhazmat.2019.121519
  • 24. Gao, Y., Cong, S., Yu, H., Zou, D. Investigation on microwave absorbing properties of 3D C@ZnCo2O4 as a highly active heterogenous catalyst and the degradation of ciprofloxacin by activated persulfate process. Separation and Purification Technology, 262, 118330, 2021, doi:https://doi.org/10.1016/j.seppur.2021.118330
  • 25. Wu, X., Gu, X., Lu, S., Qiu, Z., Sui, Q., Zang, X., Miao, Z., Xu, M. Strong enhancement of trichloroethylene degradation in ferrous ion activated persulfate system by promoting ferric and ferrous ion cycles with hydroxylamine. Separation and Purification Technology, 147, 186-193, 2015, doi:https://doi.org/10.1016/j.seppur.2015.04.031
  • 26. Li, Z., Sun, Y., Yang, Y., Han, Y., Wang, T., Chen, J., Tsang, D.C.W. Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater. Journal of Hazardous Materials, 383, 121240, 2020, doi:https://doi.org/10.1016/j.jhazmat.2019.121240
  • 27. He, M., Wan, Z., Tsang, D.C.W., Sun, Y., Khan, E., Hou, D., Graham, N.J.D.: Performance indicators for a holistic evaluation of catalyst-based degradation—A case study of selected pharmaceuticals and personal care products (PPCPs). Journal of Hazardous Materials, 402, 123460, 2021, doi:https://doi.org/10.1016/j.jhazmat.2020.123460