LAVANTA BİTKİSİ ÖZÜTÜ KULLANILARAK $SİNH_2@FeNP$ NANOKOMPOZİTİNİN YEŞİL SENTEZİ İLE SULU ÇÖZELTİDEN METİLEN MAVİSİNİN GİDERİMİ: DENEYSEL TASARIM YAKLAŞIMI

Bu çalışmada, lavanta bitkisi (Lavandula angustifolia) özütü kullanılarak yeşil sentez yöntemiyle sentezlenen SiNH2@FeNP nanokompoziti ile sulu çözeltiden metilen mavisi (MM) boyar maddesinin giderilmesi Box-Behnken deneysel tasarım yöntemi uygulanarak incelenmiştir. Yeni sentezlenen bu malzeme ile sulu çözeltiden metilen mavisi gideriminde adsorpsiyon sürecini etkileyen çözelti pH’ı, adsorban dozu ve başlangıç boya konsantrasyonu parametrelerinin etkisi araştırılmıştır. Elde edilen SiNH2@FeNP nanokompozitinin yapısı FTIR, SEM ve XRD teknikleri kullanılarak karakterize edilmiştir. Deney tasarımı sonuçlarından elde edilen verilere göre, pH, başlangıç metilen mavisi konsantrasyonu ve adsorban dozaj değerleri sırasıyla 10, 42,7 mg/L ve 0,5 g/L'de tutulduğunda yaklaşık %75 metilen mavisi boya giderim veriminin elde edilebileceği belirlenmiştir. Bu veriler ışığında yeşil sentez metodu ile üretilen bu nanokompozitin çevre dostu, ucuz, uygulanabilirliği kolay ve etkili bir adsorban olduğu görülmektedir.

GREEN SYNTHESIS OF $SINH_2@FENP$ NANOCOMPOSITE USING LAVENDER EXTRACT AND REMOVAL OF METHYLENE BLUE FROM AQUEOUS SOLUTION: EXPERIMENTAL DESIGN APPROACH

In this study, the removal of methylene blue (MM) dyestuff from aqueous solution with SiNH2@FeNP nanocomposite synthesized by green synthesis method using lavender plant (Lavandula angustifolia) extract was investigated by applying Box-Behnken experimental design method. The effect of solution pH, adsorbent dose and initial dye concentration parameters, which affect the adsorption process, on the removal of methylene blue from aqueous solutions with this newly synthesized material was investigated. The structure of the obtained SiNH2@FeNP nanocomposite was characterized using FTIR, SEM and XRD techniques. According to the data obtained from the experimental design results, it was determined that approximately 75% methylene blue dye removal efficiency could be obtained when pH, initial methylene blue concentration and adsorbent dosage values were kept at 10, 42.7 mg/L and 0.5 g/L, respectively.In the light of these data, it is seen that this nanocomposite produced by the green synthesis method is an environmentally friendly, inexpensive, easy to apply and effective adsorbent.

___

  • Arabi, S., Sohrabi, M. 2014. Removal of Methylene Blue, a Basic Dye, from Aqueous Solutions Using Nano-Zerovalent Iron. Water Science and Technology 70(1),24–31. doi: 10.2166/wst.2014.189.
  • Cao, Y., Zhou, G., Zhou, R., Wang, C., Chi, B., Wang, Y., Hua, C., Qiu, J., Jin, Y., Wu, S., 2020. Green Synthesis of Reusable Multifunctional γ-Fe2O3/Bentonite Modified by Doped TiO2 Hollow Spherical Nanocomposite for Removal of BPA. Science of the Total Environment 708,134669. doi: 10.1016/j.scitotenv.2019.134669.
  • Crane, R. A., T. B. Scott. 2012. Nanoscale Zero-Valent Iron: Future Prospects for an Emerging Water Treatment Technology. Journal of Hazardous Materials 211–212:112–25. doi: 10.1016/j.jhazmat.2011.11.073.
  • Demir, M. 2021. Green Synthesis of Spherical- Shapep Ni1/3Co1/3Mn1/3CO3 Particles. Mühendislik Bilimleri ve Tasarım Dergisi , 9(1), 330 – 335. doi: 10.21923/jesd.726228.
  • Ebrahiminezhad, A., Taghizadeh, S., Ghasemi, Y., Berenjian, A., 2018. Green Synthesized Nanoclusters of Ultra-Small Zero Valent Iron Nanoparticles as a Novel Dye Removing Material. Science of the Total Environment 621,1527–32. doi: 10.1016/j.scitotenv.2017.10.076.
  • Elmoubarki, R., Taoufik, M., Moufti, A., Tounsadi, H., Mahjoubi, F.Z., Bouabi, Y., Qourzal, S., Abdennouri, M., Barka. N., 2017. Box-Behnken Experimental Design for the Optimization of Methylene Blue Adsorption onto Aleppo Pine Cones. Journal of Materials and Environmental Science 8(6), 2184–91.
  • Eren, A., Baran, M.F., 2019. Green Synthesis, Characterization and Antimicrobial Activity of Silver Nanoparticles (AgNPs) from Maize (Zea Mays L.). Applied Ecology and Environmental Research 17(2),4097–4105. doi: 10.15666/aeer/1702_40974105.
  • Erşan, M., Güler, Ü. A., Doğan, H., Sarraj, B., 2020. Kolemanit Destekli NZVI Kullanılarak Sulu Çözeltilerden Metilen Mavisinin Giderimi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9(1),114–27. doi: 10.28948/ngumuh.681256.
  • Fenglian, F., Dionysios D. D., Liu, H., 2014. The Use of Zero-Valent Iron for Groundwater Remediation and Wastewater Treatment: A Review. Journal of Hazardous Materials 267,194–205. doi: 10.1016/j.jhazmat.2013.12.062.
  • Hameed, B. H., 2009. Evaluation of Papaya Seeds as a Novel Non-Conventional Low-Cost Adsorbent for Removal of Methylene Blue. Journal of Hazardous Materials 162(2–3),939–44. doi: 10.1016/j.jhazmat.2008.05.120.
  • Iravani, S., 2011. Green Synthesis of Metal Nanoparticles Using Plants. Green Chemistry 13(10),2638. doi: 10.1039/c1gc15386b.
  • Kharissova, O.V., Rasika Dias, H. V., Kharisov, B. I., Pérez, B.O., Pérez. V.M. J., 2013. The Greener Synthesis of Nanoparticles. Trends in Biotechnology 31(4),240–48. doi: 10.1016/j.tibtech.2013.01.003.
  • Kumar, B., Smita, K., Vizuete, K.S., Cumbal, L., 2016. Aqueous Phase Lavender Leaf Mediated Green Synthesis of Gold Nanoparticles and Evaluation of Its Antioxidant Activity. Biology and Medicine 8(3). doi: 10.4172/0974-8369.1000290.
  • Lohrasbi, S., Kouhbanani, M. A. J., Beheshtkhoo, N., Ghasemi, Y., Amani, A. M., Taghizadeh, S., 2019. Green Synthesis of Iron Nanoparticles Using Plantago Major Leaf Extract and Their Application as a Catalyst for the Decolorization of Azo Dye. BioNanoScience 9(2),317–22. doi: 10.1007/s12668-019-0596-x.
  • Mehrazar, E., Rahaie, M., Rahaie. S., 2015. Application of Nanoparticles for Pesticides, Herbicides, Fertilisers and Animals Feed Management. International Journal of Nanoparticles 8(1),1–19. doi: 10.1504/IJNP.2015.070339.
  • Yukti, M., Kumar, P., Sharma, R. K., Filip, J., Varma, R. S., Zbořil, R., Gawande, B.M., 2020. Sustainable Synthesis of Nanoscale Zerovalent Iron Particles for Environmental Remediation. ChemSusChem 13(13),3288–3305. doi: 10.1002/cssc.202000290.
  • Gholamreza, M., Khosravi, R., 2011. The Removal of Cationic Dyes from Aqueous Solutions by Adsorption onto Pistachio Hull Waste. Chemical Engineering Research and Design 89(10),2182–89. doi: 10.1016/j.cherd.2010.11.024.
  • Nasrollahzadeh, M.,, Atarod, M., Sajjadi, M., Sajadi, S. M., Issaabadi, Z., 2019. Plant-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization, and Applications. Interface Science and Technology. 28, 199-322.
  • Nigiz, F. 2018. Yüzey Yanıt Metodu ile Optimize Edilen Metil Laurat Üretiminin Membran Reaktörde Uygulaması. Mühendislik Bilimleri ve Tasarım Dergisi 6(1), 47-55. doi: 10.21923/jesd.375201.
  • Ngulube, T., Gumbo,J. R., Masindi, V., Maity, A., 2019. Preparation and Characterisation of High Performing Magnesite-Halloysite Nanocomposite and Its Application in the Removal of Methylene Blue Dye. Journal of Molecular Structure 1184,389–99. doi: 10.1016/j.molstruc.2019.02.043.
  • Pamukoglu, M. Y., Kargi, F.,2009. Removal of Cu(II) Ions by Biosorption onto Powdered Waste Sludge (PWS) Prior to Biological Treatment in an Activated Sludge Unit: A Statistical Design Approach. Bioresource Technology 100(8),2348–54. doi: 10.1016/j.biortech.2008.11.032.
  • Pamukoglu, M. Y., Kirkan, B., Senyurt, M., 2017. Removal of Thorium(IV) from Aqueous Solution by Biosorption onto Modified Powdered Waste Sludge: Experimental Design Approach. Journal of Radioanalytical and Nuclear Chemistry 314(1),343–52. doi: 10.1007/s10967-017-5349-0.
  • Zibin, P., Lin, Y., Sarkar, B.,Owens, G., Chen, Z., 2019. Green Synthesis of Iron Nanoparticles Using Red Peanut Skin Extract: Synthesis Mechanism, Characterization and Effect of Conditions on Chromium Removal. Journal of Colloid and Interface Science 558,106–14. doi: 10.1016/j.jcis.2019.09.106.
  • Perrotti, T. C., Freitas, N. S., Alzamora, M., Sánchez, D. R., Carvalho, M.F., 2019. Green Iron Nanoparticles Supported on Amino-Functionalized Silica for Removal of the Dye Methyl Orange. Journal of Environmental Chemical Engineering 7(4),103237. doi: 10.1016/j.jece.2019.103237.
  • Sadeghi, S., Sheikhzadeh, E., 2009. Solid Phase Extraction Using Silica Gel Modified with Murexide for Preconcentration of Uranium (VI) Ions from Water Samples. Journal of Hazardous Materials 163(2–3),861–68. doi: 10.1016/j.jhazmat.2008.07.053.
  • Sadia,S., Tahir, A., Chen, Y., 2016. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications. Nanomaterials 6(11),1–26. doi: 10.3390/nano6110209.
  • Chieh, S., Zhu, X., Djilali, N., 2019. Modeling of PEM Fuel Cell Catalyst Layers: Status and Outlook. Vol. 2. Springer Singapore.
  • Kumar, S. V., Rajeshkumar, S., 2018. Plant-Based Synthesis of Nanoparticles and Their Impact. Vol. 1. Elsevier Inc.
  • Ting, W., Jin, X., Chen, Z., Megharaj, M., Naidu, R., 2014. Green Synthesis of Fe Nanoparticles Using Eucalyptus Leaf Extracts for Treatment of Eutrophic Wastewater. Science of the Total Environment 466–467,210–13. doi: 10.1016/j.scitotenv.2013.07.022.
  • Jianan, X., Gao, B., Yue, Q., Gao, Y., Li, Q., 2015. Removal of Trihalomethanes from Reclaimed-Water by Original and Modified Nanoscale Zero-Valent Iron: Characterization, Kinetics and Mechanism. Chemical Engineering Journal 262,1226–36. doi: 10.1016/j.cej.2014.10.080.
Mühendislik Bilimleri ve Tasarım Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: Süleyman Demirel Üniversitesi Mühendislik Fakültesi