ELEKTRİK GÜÇ SİSTEMLERİNDE GÜÇ AKIŞI ANALİZİ VE BİR EĞİTİM ARACININ GELİŞTİRİLMESİ

Gelişen teknoloji ve artan çevresel kaygılar, elektrik enerjisine olan talebi her geçen gün artırmaktadır. Ayrıca, elektrik güç sistemlerinin (EGS) işletimi sırasında en çok zorlanılan konulardan biri de sürdürülebilir ve kaliteli elektrik enerjisi sağlamaktır. Diğer yandan, üretim tarafında rüzgar ve güneş gibi yenilenebilir enerji kaynakları dahil edilirken tüketim tarafında da elektrikli araçlar gibi yeni yüklerin sayısı artmaktadır. Bahsedilen gelişmeler, EGS’lerde çözülmesi gereken önemli operasyonel sorunlara neden olmaktadır. Uygulama sürecinde oluşabilecek sorunları önceden tespit edilebilmesi için güç akış analizi önem kazanmıştır. Güç akışı, hatlardaki aktif ve reaktif güç akışını, baraların voltajını ve faz açısını, hatlardan geçen akımı ve buna bağlı olarak sistemde meydana gelen güç kayıplarını belirlemek için kullanılmaktadır. Bu çalışmada EGS'lerde güç akışı analizi incelenmiş ve ilgili alanda eğitim gören mühendislik öğrencilerinin güç akışını daha iyi anlamaları için bir eğitim aracı geliştirilmiştir. IEEE 14 baralı test sistemi kullanılarak QtDesigner üzerinden arayüz tasarımı sağlanmış ve Python programlama dilinin NumPy kitaplığında Newton-Raphson yöntemi kullanılarak güç akışı analizi yapılmıştır. Geliştirilen model ve arayüzün test edilebilmesi için farklı durum çalışmaları oluşturulmuştur.

POWER FLOW ANALYSIS IN ELECTRIC POWER SYSTEMS AND DEVELOPMENT OF AN EDUCATION TOOL

The recent development of technology and the increased environmental concern give rise to the demand for electrical energy. Furthermore, one of the most challenging tasks during the operating of EPSs is to provide sustainable and quality electric power. On the other hand, renewable energy sources such as wind and solar are integrated into the electric power systems (EPSs) on the supply side, while the penetration of new loads such as electric vehicles has been raising on the demand side as well. The mentioned changes on EPSs cause significant operational issues to figure out. To foresee the problems that may occur during the application process, the power flow analysis (PFA) has gained importance. PFA is used to determine the active and reactive power flow on the lines, the voltage and the phase angle of the buses, the current flowing through the lines, and accordingly the energy losses of the system. In this study, power flow analysis in EPSs has been examined and an educational tool has been developed for engineering students studying in the related field to provide a better understanding of power flow. Using the IEEE 14 bus test system, the interface design has been provided via QtDesigner, and the power flow analysis has been performed by using the Newton-Raphson method in the NumPy library of the Python programming language. To test the developed model and interface, various case studies have been evaluated.

___

  • Chow, J. H., & Cheung, K. W., 1992, A toolbox for power system dynamics and control engineering education and research. IEEE transactions on Power Systems, 7(4), 1559-1564.
  • Dzafic, I., Glavic, M., & Tesnjak, S., 2004, An object-oriented graphical package for power system simulation and analysis. In Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference (IEEE Cat. No. 04CH37521) (Vol. 3, pp. 835-839). IEEE.
  • Ekinci, S., Demiroren, A., & Zeynelgil, H. L., 2017, PowSysGUI: A new educational software package for power system stability studies using MATLAB/Simulink. International Journal of Electrical Engineering Education, 54(4), 283-298.
  • Fernandes, T. R., Fernandes, L. R., Ricciardi, T. R., Ugarte, L. F., & de Almeida, M. C. (2018, September). Python Programming Language for Power System Analysis Education and Research. In 2018 IEEE PES Transmission & Distribution Conference and Exhibition-Latin America (T&D-LA) (pp. 1-5). IEEE.
  • Glover, J. D., Sarma, M. S., & Overbye, T., 2012, Power system analysis & design, Fifth Edition, Stamford.
  • Group, W., 1973, “Common Format for Exchange of Solved Load Flow Data” IEEE Transactions on Power Apparatus and Systems (Volume: PAS-92, Issue: 6, Nov. 1973)
  • Hakim, L., Wahidi, M., Handoko, T., Gusmedi, H., Soedjarwanto, N., & Milano, F., 2014, Development of a power flow software for distribution system analysis based on rectangular voltage using python software package. In 2014 6th International Conference on Information Technology and Electrical Engineering (ICITEE) (pp. 1-5). IEEE.
  • Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2
  • IRENA, 2020, Renewable Energy Statistics 2020 The International Renewable Energy Agency, Abu Dhabi.
  • Islam, S., & Chowdhury, N., 2001, A case-based windows graphic package for the education and training of power system restoration. IEEE Transactions on Power Systems, 16(2), 181-187.
  • Lai, H. Y., Mai, W., & Chung, C. Y. (2014, December). Educational simulation platform for micro-grid. In 2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC) (pp. 1-7). IEEE.
  • Levi, V. A., & Nedic, D. P., 2001, Application of the optimal power flow model in power system education. IEEE Transactions on power systems, 16(4), 572-580.
  • Liu, J., Salama, M. M. A., & Mansour, R. R., 2002, An efficient power flow algorithm for distribution systems with polynomial load. International Journal of Electrical Engineering Education, 39(4), 371-386.
  • Milano, F., 2013, A Python-based software tool for power system analysis. In 2013 IEEE Power & Energy Society General Meeting (pp. 1-5). IEEE.
  • Overbye, T. J., Sauer, P. W., Marzinzik, C. M., & Gross, G., 1995, A user-friendly simulation program for teaching power system operations. IEEE Transactions on Power Systems, 10(4), 1725-1733.
  • Saadat, H., 2002, Power System Analysis. Tata McGraw-Hill, New Delhi.
  • Saygın, D., Bülent Tör, O., Teimourzadeh, S., Koç, M., Hildermeier, J., & Kolokathis, C., 2019, Transport sector transformation : Integrating electric vehicles into Turkey’s distribution grids, [Online]. Available: https://www.shura.org.tr/wp-content/uploads/2019/12/Transport-sector-transformation.Integrating-electric-vehicles-into-Turkey’s-distribution-grids.pdf.
  • Shin, J. R., Lee, W. H., & Im, D. H., 1999, A windows-based interactive and graphic package for the education and training of power system analysis and operation. IEEE Transactions on Power Systems, 14(4), 1193-1199.
  • Sidea, D. O., Bulac, C., & Boicea, V. A. (2017, May). Power engineering education toolbox for active power flow control using the phase-shifting transformer. In 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP) (pp. 177-183). IEEE.
  • Srikanth, P., Rajendra, O., Yesuraj, A., Tilak, M., & Raja, K. (2013). Load flow analysis of IEEE 14 bus system using matlab. International Journal of Engineering Research and Technology, 2(5), 149-155.
  • T.E. Oliphant, “Python for Scientific Computing,” IEEE Computing in Science and Engineering, Vol. 9, No. 3, May 2007, pp. 10-20
  • Thurner, L., Scheidler, A., Schäfer, F., Menke, J. H., Dollichon, J., Meier, F., ... & Braun, M., 2018, pandapower—an open-source python tool for convenient modeling, analysis, and optimization of electric power systems. IEEE Transactions on Power Systems, 33(6), 6510-6521.
  • Till Bunsen et al., 2019, Global EV Outlook 2019 to electric mobility, OECD iea.org, p. 232, 2019, [Online]. Available: www.iea.org/publications/reports/globalevoutlook2019.
  • Turner, M., Foreman, C., & Sundararajan, R., 2014, Computer Simulation Tools to Enhance Undergraduate Power Systems Education. In 2014 ASEE Annual Conference & Exposition (pp. 24-307).
  • Vournas, C. D., Potamianakis, E. G., Moors, C., & Van Cutsem, T., 2004, An educational simulation tool for power system control and stability. IEEE Transactions on Power Systems, 19(1), 48-55.
  • Yu, D. C., Jarnal, N., Wang, W., Zang, X. G., & Brandt, J. R., 1994, A graphical user interface for design, simulation and analysis of power plant electrical auxiliary systems. IEEE transactions on energy conversion, 9(2), 263-269.
Mühendislik Bilimleri ve Tasarım Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: Süleyman Demirel Üniversitesi Mühendislik Fakültesi