BODRUM VE FETHİYE İLÇELERİ ARASINDAKİ BÖLGENİN b-DEĞERLERİNİN UZAYSAL ANALİZİ, GÜNEYBATI ANADOLU, TÜRKİYE

Herhangi bir bölgenin deprem veri setinde verilen bir büyüklüğün frekans dağılımı olan b-değerinin değişiminin tahmini, o bölgenin tektonik mekanizmasının yorumlanması ve sismik tehlike değerlendirmesi için önemli bir parametredir. Gerilme ile b-değeri arasında ters korelasyon bulunmaktadır. Magnitüd-frekans ilişkisi, iyi bilinen Gutenberg-Richter ilişkisi ile tanımlanır. Bu makalenin amacı, Bodrum ve Fethiye ilçeleri arasındaki bölgenin (GB Anadolu, Türkiye) yakın zamandaki sismisitesini araştırmaktır. Bu çalışmada 2004-2020 yılları arasında magnitüdü (Ml) 2'den büyük toplam 27357 deprem verisi kullanılmıştır Depremlerin büyük çoğunluğunun odak derinlikleri 0 ile 33 km arasında yoğunlaşmaktadır. Bu çalışmada, Gutenberg-Richter ilişkisindeki b-değeri, maksimum likelihood yöntemiyle hesaplanmıştır. Hesaplanan b-değerleri çalışma bölgesinde 0.5 ile 2 arasında değişmektedir. Daha düşük b değerleri (0.5-1) çalışma alanının GD'sunda (esas olarak Beydağları birimi) yer alırken, batı-doğu yönelimli yüksek değerler (1-2) fay zonları boyunca yer almaktadır. Çalışma alanındaki en yüksek b değerleri muhtemelen kırılgan alt-orta kabuk, termal rejim, normal faylar ve bu faylarla sınırlanan genç havzalarla ilgilidir.

THE SPATIAL ANALYSIS OF b-VALUES OF THE AREA BETWEEN BODRUM AND FETHIYE DISTRICTS, THE SOUTH-WESTERN ANATOLIA, TURKEY

The estimation of the variation of the b-value, which is frequency distribution of a magnitude given in an earthquake data set of any region, is important parameter for interpretation of tectonic mechanism and seismic hazard assessment of that region. There is an inverse correlation between stress and b-value. The magnitude-frequency relationship is described by the well-known the Gutenberg-Richter relationship. The purpose of this paper is to investigate the recent seismicity of the region between the Bodrum and Fethiye, the south-western Anatolia in Turkey. A total of 27357 earthquake data is taken into account in this study in the period between 2004 to 2020 with magnitude (Ml) larger than 2. The majority of focal depths of earthquakes are concentrated between 0 and 33 km. The b-value in the Gutenberg-Richter relationship was estimated by the maximum likelihood method in this study. The estimated b-values range between 0.5 and 2 in the study region. While the lower b-values (0.5-1) are located at the SE of the study area (mainly the Beydağları unit), higher values (1-2) are trending on the west-east direction along the fault zones. The highest b-values in the study area are possibly related with the brittle lower-mid crust, thermal regime, normal faults and young basins bounded by these faults.

___

  • Aki, K., 1965. Maximum likelihood estimate of b in the formula log N=a-bM and its confidence limits. Bulletin of the Earthquake Research Institute (University of Tokyo), 43, 237-239.
  • Akyol, N., Zhu L., Mitchell, B.J., Sozbilir, H., Kekovali, K., 2006. Crustal structure and local seismicity in western Anatolia. Geophysical Jounal International, 166, 1259-1269.
  • Akyüz, H.S., Altunel E., 2001. Geological and archaeological evidence for post-Roman earthquake surface faulting at Cibyra, SW Turkey. Geodinamica Acta, 14, 95-101.
  • Al-Lazki, A.I., Sandvol, E., Seber, D., Barazangi, M., Turkelli, N., Mohamad, R., 2004. Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian, Eurasian and African plates. Geophysical Journal In,ternational 158, 1024-1040.
  • Ambraseys, N.N., White, D.,1997. The seismicity of the eastern Mediterranean region 550-1 BC: a re-appraisal. Journal Earthqake Engineering, 1, 603-632.
  • Ambraseysi, NN., 1989. Temporary seismic quiescence:SE Turkey. Geophysical Jounal, 96, 311-331.
  • Ateş, A., Bilim, F., Büyüksaraç, A., Aydemir, A., 2012. Crustal structure of Turkey from aeromagnetic, gravity and deep seismic reflection data. Surveys in Geophysics, 33, 869-885.
  • Bayrak, E., Yilmaz, S., Bayrak, Y., 2017. Temporal and spatial variations of Gutenberg-Richter parameter and fractal dimension in western Anatolia, Turkey. Journal of Asian Earth Sciences, 138, 1-11.
  • Bayrak, Y., Bayrak, E., 2012. An evaluation of earthquake hazard potential for different regions in western Anatolia using the historical and instrumental earthquake data. Pure and Applied Geophysics, 169, 1859-1873.
  • Biryol, C.B., Beck, SL., Zandt, G., Ozacar, A.A., 2011. Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophysical Journal International, 184, 1037-1057.
  • Bozkurt, E., Mittwede, S.K., 2005. Introduction: evolution of continental extensional tectonics of western Turkey. Geodinamica Acta, 18, 153-165.
  • Chorozoglou, D., Papadimitriou, E., 2019. Monitoring earthquake network measures between main shocks in Greece. Journal of Seismology, 23, 505-519.
  • Çemen, I., Helvaci, C., Yalcin, Ersoy, E., 2014. Cenozoic extensional tectonics in western and central Anatolia, Turkey: Introduction. Tectonophysics, 635, 1-5.
  • Çoban, K.H., Sayıl, N., 2019. Evaluation of earthquake recurrences with different distribution models in western Anatolia. Journal of Seismology, 23, 1405-1422.
  • Çoban, K.H., Sayıl, N., 2020. Conditional probabilities of Hellenic Arc earthqukes based on different distribution models. Pure and Applied Geophysics, 177, 5133-5145.
  • Collins, A.S., Robertson, A.H.F., 1997. The Lycian Melange, south-west Turkey: an emplaced accreationary complex. Geology, 25, 255-258.
  • Collins, A.S., Robertson, AHF., 1998. Processes of Late Cretaceous to Late Miocene episodic thrust-sheet translation in the Lycian Taurides, SW Turkey. Journal of Geological Society, 155, 759-772.
  • Dolmaz, M.N., Hisarli, Z.M., Ustaomer, T., Orbay, N., 2005. Curie point depths based on spectrum analysis of aeromagnetic data, west Anatolian extensional province, Turkey. Pure and Applied Geophysics, 162, 571-590.
  • Elitez, I., Yaltirak, C., 2016. Miocene to Quaternary tectonostratigraphic evolution of the middle section of the Burdur-Fethiye Shear Zone, south-western Turkey: Implications for the wide inter-plate shear zones. Tectonophysics, 690, 336-354.
  • Elitez, I., Yaltirak, C., Aktug, B., 2016. Extensional and compressional regime driven left-lateral shear in southwestern Anatolia (eastern Mediterranean): The Burdur-Fethiye Shear Zone. Tectonophysics, 688,26-35.
  • Elitez, I., Yaltiraki, C., Kurcer, A., Ozdemir, E., Guldogan, C.U., 2017. A critical review of the Kibyra fault (Burdur-Fethiye Shear Zone, SW Turkey). Geodinamica Acta, 29, 91-102.
  • Endrun, B., Meier, T., Lebedev, S., Bohnoff, M., Stavrakakis, G., Harjes, H.P., 2008. S velocity structure and radial anisotropy in the Aegean region from surface wave dispersion. Geophysical Journal International, 174, 593-616.
  • Enescu, B., Ito, K., 2002. Spatial analysis of the frequency-magnitude distribution and decay rate of aftershock activity of the 2000 western Tottori earthquake. Earth Planets Space, 54, 847-859.
  • Ganas, A., Elias, P., Kapetanidis, V., Valkaniotis, S., Briole, P., Kassaras, I., Argyrakis, P., Barberopoulou, A., Moshou, A., 2020. The July 20, 2017 M6.6 Kos Earthquake: Seismic and geodetic evidence for an active north-dipping normal fault at the western end of the Gulf of Gokova (SE Aegean Sea). Pure and Applied Geophysics, 176, 4177-4211.
  • Gardner, J.K., Knopoff, L., 1974. Is the sequence of earthquakes in southern California, with aftershocks removed Poissonian? Bulletin Seismological Society of America, 64,1363-1367.
  • Gutenberg, B., Richter, C.F., 1944. Frequency of earthquakes in California. Bulletin Seismological Society of America, 34, 185-188.
  • Hall, J., Aksu, A.E., Elitez, I., Yaltirak, C., Cifci, G., 2014. The Fethiye-Burdur fault zone: A component of upper plate extension of the subduction transform edge propagator fault linking Hellenic and Cyprus Arcs, eastern Mediterranean. Tectonophysics, 635, 80-99.
  • Hetzel, R., Romer, R.L, Candan, O., Passchier, C.W., 1998. Geology of the Bozdag areai central Menderes massif, SW Turkey: Pan-African basement and Alpine deformation. Geologische Rundschau, 87,394-406.
  • Kalafat, D., Güneş, Y., Kekovalı, K., Kara, M., Deniz, P., Yılmazer, M., 2011. Bütünleştirilmiş homojen Türkiye deprem kataloğu (1900-2010; M≥4.0). Boğaziçi Üniversitesi Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü, 643 sayfa.
  • Karabacak, V., 2011. Geological, geomorphological and archaeoseismological observations along the Cibyra fault and their implications for the regional tectonics of SW Turkey. Turkish Jounal of Earth Sciences, 20, 429-447.
  • Karasözen, E., Nissen, E., Bergman, E.A., Johnson, K.L., Walters, R.J., 2016. Normal faulting in the Simav graben of western Turkey reassessed with calibrated earthquake relocations. Journal of Geophysical Research: Solid Earth.101002/2016JB012828.
  • Kind, R., Eken, T., Tilmann, F., Soudoudi, F., Taymaz, T., Bulut, F., Yuan, X., Can, B., Schneider, F., 2015. Thickness of the lithosphere beneath Turkey and surroundings from S-receiver functions. Solid Earth, 6,971-984.
  • Konca, A.O., Guvercin, S.E., Ozarpaci, S., Ozdemir, A., Funning, G.J., Dogan, U., Ergintav, S., Floyd, M., Karabulut, H., Reilinger, R., 2019. Slip distribution of the 2017 Mw6.6 Bodrum-Kos earthquake: resolving the ambiguity of fault geometry. Geophysical Jounal International, 219, 911-923.
  • Le, Pichon, X., Chamonrooke, N., Lallemant, S., Noomen, R., Veis, G., 1995. Geodetic determination of the kinematics of central Greece with respect to Europe, implications for eastern Mediterranean tectonics. Journal of Geophysical Research, 100, 12675-12690.
  • McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Teableb, A., Toksoz, M.N., Veis, G., 2000. Global positioning system constraints on plate kinematics and dynamics in the eastern Med.iterranean and Caucasus. Journal of Geophysical Research, 105, 5695-5719.
  • McKenzie, D., 1972. Active tectonics of the Mediterranean region. Geophysical Journal of the Royal Astronomical Society, 30, 109-185.
  • Mesimeri, M., Kourouklas, C., Papadimitriou, E., Karakostas, V., Kementzetzidou, D., 2018. Analysis of microseismicity associated with the 2017 seismic swarm near the Aegean coast of NW Turkey. Acta Geophysics, 66, 479-495.
  • Mogi, K., 1962. Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes. Bulletin of the Earthquake Research Institute University Tokyo, 40, 831-853.
  • Över, S., Özden, S., Pinar, A., Yilmaz, H., Kamaci, Z., Unlugenc, U.C., 2016. Late Cenozoic stress state distributions at the intersection of the Hellenic and Cyprus Arcs, SW Turkey. Journal of Asian Earth Sciences, 132,94-102.
  • Özer, C., Gök, E., Polat, O., 2018. Three-dimensional seismic velocity structure of the Aegean region of Turkey from local earthquake tomography. Annales Geophysicae 61, 1-21.
  • Özer, S., Gungor, T., Sari, B., Sagular, EK., Gormus, M., Ozkan-Ongen, I., 2017. Cretaceous rudist-bearing platform carbonates from the Lycian Nappes (SW Turkey): Rudist associations and depositional setting. Cretaceous Research, 79,122-145.
  • Öztürk, S., 2015. A study on the correlations between seismotectonic b-value and Dc-value, and seismic quiescence Z-value in the western Anatolian region of Turkey. Austrian Journal of Earth Sciences, 108, 172-184.
  • Roy, S., Ghost, U., Hazra, S., Kayal, J.R., 2011. Fractal dimension and b-value mapping in the Andaman-Sumatra subduction zone. Natural Hazards, 57,27-37.
  • Saunders, P., Priestley, K., Taymaz, T., 1998. Variations in the crustal structure beneath western Turkey. Geophysical Journal International, 134,373-389.
  • Sayıl, N., 2014. Determination of the crust and upper-mantle structure in Anatolia by surface wave data. Natural Science, 6, 968-977.
  • Sayıl, N., Osmanşahin, İ., 2008. An investigation of seismicity for western Anatolia. Nataural Hazards. 10.1007/s11069-007-9141-2.
  • Scholz, C.H., 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquake. Bulletin Seismological Society of America, 58, 399-415.
  • Seyitoğlu, G., Isık, V., Cemen, I., 2004. Complete Tertiary exhumation history of the Menderes massif, western Turkey: an alternative working hypothesis. Terra Nova, 16,358-364.
  • Şengör, AMC., Yilmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75,181-241.
  • Tan, O., Tapirdamaz, M.C., Yoruk, A., 2008. The earthquake catalogues for Turkey. Turkish Journal of Earth Sciences, 17,405-418.
  • Taroni, M., Akinci, A., 2021. Good practices in PSHA: declustering, b-value estimation, foreshocks and aftershocks inclusion; a case study in Italy. Geophysical Journal International, 224,1175-1188.
  • Tezel, T., Shibutani, T., Kaypak, B., 2013. Crustal thickness of Turkey determined by receiver function. Journal of Asian Earth Sciences, 75,36-45.
  • Utsu, T., 1999. Representation and analysis of the earthquake size distribution: A historical review and some new approaches. Pure and Applied Geophysics, 155,509-535.
  • Wiemer, S., 2001. A software package to analyze seismicity: ZMAP. Seismological Research Letters, 72, 373-382.
  • Wiemer, S., Benoit, J., 1996. Mapping the b-value anomaly at 100 km depth in the Alaska and New Zealand subduction zones. Geophysical Research Letters, 23,1557-1560.
  • Wiemer, S., Wyss, M., 2000. Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States and Japan. Bulletin of Seismological Society of America, 90, 859- 869.
  • Wiemer, S., Wyss, M., 2002. Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Advances in Geophysics, 45,259-302.
  • Yolsal-Çevikbilen, S., Taymaz, T., Helvaci, C., 2014. Earthquake mechanisms in the Gulfs of Gokova, Sigacik, Kusadasi, and the Simav Region (western Turkey): Neotectonics, seismotectonics and geodynamic implications. Tectonophysics, 635,100-124.
  • Zhou, Y.J., Zhou, S.Y., Zhuang, J.C., 2018. A test on methods for Mc estimation based on earthqake catalog. Earth and Planetary Physics: Solid Earth: Seismology, 2, 150- 162.
Mühendislik Bilimleri ve Tasarım Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: Süleyman Demirel Üniversitesi Mühendislik Fakültesi
Sayıdaki Diğer Makaleler

EDİRNE İKLİM ŞARTLARINDA ÇEVRE SICAKLIĞI VE RÜZGAR HIZININ POLİKRİSTAL FOTOVOLTAİK PANEL ÇIKIŞ GÜCÜNE ETKİLERİNİN İNCELENMESİ

Ahmet Erhan AKAN, Dinçer AKAL

ÇOK PERİYOTLU ÇOK ÜRÜNLÜ KAPALI DÖNGÜ TEDARİK ZİNCİRİ İÇİN YENİ BİR ÇİFT-AMAÇLI MODEL

Nadi Serhan AYDIN

ISPARTA AÇI BÖLGESİ (GÜNEYBATI TÜRKİYE) YAPILARIN SINIR TESPİTİ VE DERİNLİK TAHMİNİ ÜZERİNE HAVA MANYETİK VERİLERLE BİR ARAŞTIRMA

Ezgi ERBEK KIRAN

B4C TAKVİYELİ AA7075 KOMPOZİT METAL KÖPÜK ÜRETİMİ VE KARAKTERİZASYONU

Güzide Meltem LULE ŞENÖZ, Rabia ÇINAR DAŞKESEN

ELEKTRİK GÜÇ SİSTEMLERİNDE GÜÇ AKIŞI ANALİZİ VE BİR EĞİTİM ARACININ GELİŞTİRİLMESİ

İbrahim ŞENGÖR, Mehmet Cenk KAYA

ASFALT KAPLAMALARDA TABAKA KALINLIĞININ ETKİSİNİN ARAŞTIRILMASI

Alper SEYMEN, Erol İSKENDER, Atakan AKSOY

GEREDE-KAVACIK BÖLGESİ BAZALTLARININ ENDÜSTRİYEL KULLANIMI AÇISINDAN UYGUNLUĞUNUN BELİRLENMESİ

Taşkın Deniz YILDIZ, Ali Haydar GÜLTEKİN, Şenel ÖZDAMAR

DEĞİŞTİRİLMİŞ AYRIK HAAR DALGACIK DÖNÜŞÜMÜ İLE YENİ BİR HİSTOGRAM EŞİTLEME YÖNTEMİ

Faruk BULUT

TÜRKİYE’DE NESNELERİN İNTERNETİ (IOT) ALANINDA YAZILMIŞ YÜKSEK LİSANS TEZLERİNİN İNCELENMESİ-BİR META ANALİZ ÇALIŞMASI

Ayşe ALKAN, İsmail KIRBAŞ

LAVANTA BİTKİSİ ÖZÜTÜ KULLANILARAK SİNH2@FeNP NANOKOMPOZİTİNİN YEŞİL SENTEZİ İLE SULU ÇÖZELTİDEN METİLEN MAVİSİNİN GİDERİMİ: DENEYSEL TASARIM YAKLAŞIMI

Yunus PAMUKOĞLU, Bülent KIRKAN, Belgin YOLDAŞ