Evolvent düz dişli çarklarda diş kökü eğrilerinin incelenmesi

Yuvarlanma metoduyla dişli imalatında, evolvent diş profilinin oluşturulması, alttan kesme miktarı ve diş kökünün şekli kremayer-tipi kesicinin geometrisine bağlıdır. Diş kökünün geometrisi dişdibindeki gerilme durumunu ve dolayısıyla dişlinin yük taşıma kabiliyetini doğrudan etkilemektedir. Bu nedenle diş kök geometrisi detaylıca incelenmelidir. Kesici takımın ucu dişlinin kökünü şekillendirmektedir. Bu çalışmada aynı diş başı yüksekliği için çeşitli takım ucu formları verilmiştir. Yuvarlanma prosesi bilgisayarda simüle edilerek farklı takım uçlarının imal edilen dişli geometrileri üzerindeki etkileri inceleyen grafikler elde edilmiştir.

During the generating cutting process, the generation of involute form, amount of undercut, and the shape of root fillet greatly depend on rack-type cutter specifications. The shape of fillet has a direct effect on the motion/force transmission and eventual maximum bending stresses developed at the root of the gear tooth. Hence it is necessary to have a thorough knowledge of the geometry of the root fillet. The generation of the gear tooth fillet is produced by the rack form tip. In this study a sequence of different tip shapes for the same gear dedendum is given. Computer graphs of generation simulation are obtained for investigation of different tip forms on generated profiles.

___

1. Buckingham, E., Analytical Mechanics of Gears, McGraw- Hill, New York, A.B.D, 1949

2. Salamoun, C., and Suchy, M., "Computation of Helical or Spur Gear Fillets", Mechanism and Machine Theory, Cilt 8, 305-323, 1973

3. Hefeng, B., Savage, M., and Knorr, R.J., "Computer Modeling of Rack-Generated Spur Gears", Mechanism and Machine Theory, Cilt 20,351-360,1985

4. Lopez, M.A., and Wheway, R.T., 1986," A Method for Determining the AGMA Tooth Form Factor from Equations for the Generated Tooth Root Fillet", ASME J. Mech. Transm. Autom.Des., 108, pp. 270-279.

5. Math, V. B., and Chand, S., 2004, "An Approach to the Determination of Spur Gear Tooth Root Fillet", ASME J. Mech. Des., 126(2), pp. 336-340.

6. Xiaogen, S., and Donald, RH., 2000, "Characteristic of Trochoids and Their Application to Determining Gear Teeth Fillet Shapes", Mechanism and Machine Theory, 35, pp. 291-304.

7. Litvin, F.L., and Fuentes, A., Gear Geometry and Applied Theory, Cambridge University Press, Cambridge, 2004

8. Chen, Y.-C, and Tsay, C.-B., 2002, "Stress Analysis of A Helical Gear Set With Localized Bearing Contact", Finite Element in Analysis and Design, 38, pp. 707-723.

9. Chen, C.-F., and Tsay, C.-B., 2005, "Tooth Profile Design for the Manufacture of Helical Gear Sets with Small Numbers of Teeth, IntJ of Machine Tools and Manufacture", 45(12-13), pp. 1531-1541.

10. Yang, S.-C, 2005, "Mathematical Model of a Helical Gear with Asymmetric Involute Teeth and its Analysis", Int J Adv Manuf Technol,26(5-6), pp. 448-456.

11. Lin, T., Ou, H., and Li, R., 2007,"A Finite Element Method for 3D Static and Dynamic Contact/Impact Analysis of Gear Drives", Computer Methods in Applied Mechanics and Engineering, 196,9-12, p 1716-1728

12. ISO53 (1974) Cylindrical Gears For General and Heavy Engineering-Basic Rack, International Organization for Standardization, Switzerland

13. Spitas, C., and Spitas, V., 2007, "AFEM Study of the Bending Strength of circular Fillet Gear Teeth Compared to Trochoidal Fillets Produced with Enlarged cutter Tip Radius", Mechanics Based Design of Structures and Machines, 35, pp. 59-73

14. Vulgakov, E.B. (Editor), 1981, Aviation Gear Drivers and Reducers, Mashinostroenie, Moscow