GREEN SYNTHESIS, ANTIMICROBIAL AND ANTICANCER ACTIVITIES OF AgNPs PREPARED FROM THE LEAF EXTRACT OF Eucalyptus camaldulensis

Herein we report the green synthesis of silver nanoparticles (EcAgNPs) from water fraction (Ecs), obtained from methanol extract of Eucalyptus camaldulensis at room conditions. UV-vis, HR-TEM and SEM-EDS devices were used to characterize the EcAgNPs. The UV-visible spectrum of EcAgNPs showed surface plasmon resonance peak at 420 nm. HR-TEM images showed that the EcAgNPs were spherical with a diameter in the range 3.7-29.6 nm. Ag+ ions were reduced to Ago by phytochemicals in the without adding external reducing agent. The presence of biomolecules in the Ecs was investigated by UPLC-MS/MS that detected gallic acid (20.26±0.10 ppb) and quercetin (12.4±0.08 ppb) as major constituents. The antimicrobial activities of Ecs and synthesized EcAgNPs were tested on Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus strains and Candida albicans yeast. Ecs exhibited antimicrobial activity as MIC between 16.2 and 129.3 mg mL-1 while EcAgNP showed MIC between 6.31 and 14.65 µgmL-1. The cytotoxicity of both Ecs and EcAgNPs on A549, HT29 and MDA-MB-231 cancer cell lines was tested by MTT. EcAgNPs showed more significant anticancer activity on MDA-MB-231, HT29 and A549 cancer cell lines (8.10±0.01, 5.08±0.01 and 18.58±0.03 µg mL-1) than Ecs (219.70±0.73, 916.24±0.67, 999.30±1.86 µg mL-1) and it should be investigated for use in various therapeutics.

___

  • Abubakar, E.M., 2010. Antibacterial potential of crude leaf extracts of Eucalyptus camaldulensis against some pathogenic bacteria. African J. Plant Sci. 4, 202–209.
  • Adeniyi, B.A.; Lawal, T.O. and Olaleye, S.B., 2006. Antimicrobial and Gastroprotective Activities of Eucalyptus camaldulensis (Myrtaceae) Crude Extracts. J. Biol. Sci. 6, 1141–1145.
  • Ahmed, S., Ahmad, M., Swami, B.L., Ikram, S., 2016. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 7, 17–28. https://doi.org/10.1016/j.jare.2015.02.007
  • Ashraf, A., Sarfraz, R.A., Mahmood, A., Din, M. ud, 2015. Chemical composition and in vitro antioxidant and antitumor activities of Eucalyptus camaldulensis Dehn. leaves. Ind. Crops Prod. 74, 241–248. https://doi.org/10.1016/j.indcrop.2015.04.059
  • Ayepola, O., Adeniyi, B., 2008. The Antibacterial Activity of Leaf Extracts of Eucalyptus camaldulensis (Myrtaceae). J. Appl. Sci. Res. 4, 1410–1413.
  • Baygar, T., Ugur, A., 2017. Biosynthesis of silver nanoparticles by streptomyces griseorubens isolated from soil and their antioxidant activity. IET Nanobiotechnology 11, 286–291. https://doi.org/10.1049/iet-nbt.2015.0127
  • Borase, H.P., Patil, C.D., Salunkhe, R.B., Suryawanshi, R.K., Salunke, B.K., Patil, S. V., 2014. Transformation of aromatic dyes using green synthesized silver nanoparticles. Bioprocess Biosyst. Eng. 37, 1695–1705. https://doi.org/10.1007/s00449-014-1142-4
  • Cadahía, E., Conde, E., García-Vallejo, M.C., Fernández De Simón, B., 1997. High pressure liquid chromatographic analysis of polyphenols in leaves of Eucalyptus camaldulensis, E. globulus and E. rudis: Proanthocyanidins, ellagitannins and flavonol glycosides. Phytochem. Anal. 8, 78–83. https://doi.org/10.1002/(SICI)1099-1565(199703)8:2<78::AID-PCA335>3.0.CO;2-O
  • Chathurdevi, G, Uma Gowrie, S., 2016. Green Synthesis, Optimisation and Characterization of Silver Nano particles using Aqueous Bark Extract of Casuarina junghuhniana and its Bio Efficacy. Int. J. Pharm. Sci. Rev. Res. 39, 206–212.
  • Cho, K.H., Park, J.E., Osaka, T., Park, S.G., 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 51, 956–960. https://doi.org/10.1016/j.electacta.2005.04.071
  • Contescu, C.I., Putyera, K., 2009. Encyclopedia of Nanoscience and Nanotechnology Second Edition, Crop Science.
  • Dhamecha, D., Jalalpure, S., Jadhav, K., Jagwani, S., Chavan, R., 2016. Doxorubicin loaded gold nanoparticles: Implication of passive targeting on anticancer efficacy. Pharmacol. Res. 113, 547–556. https://doi.org/10.1016/j.phrs.2016.09.037
  • Elumalai, E.K., Prasad, T.N.V.K.V., Hemachandran, J., Viviyan Therasa, S., Thirumalai, T., David, E., 2010. Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J. Pharm. Sci. Res. 2, 549–554.
  • Erci, F., Cakir-Koc, R., Isildak, I., 2018. Green synthesis of silver nanoparticles using Thymbra spicata L. var. spicata (zahter) aqueous leaf extract and evaluation of their morphology-dependent antibacterial and cytotoxic activity. Artif. Cells, Nanomedicine Biotechnol. 46, 150–158. https://doi.org/10.1080/21691401.2017.1415917
  • Erdogan Eliuz, E.A., Ayas, D., Goksen, G., 2017. In Vitro Phototoxicity and Antimicrobial Activity of Volatile Oil Obtained from Some Aromatic Plants. J. Essent. Oil-Bearing Plants 20, 758–768. https://doi.org/10.1080/0972060X.2017.1331141
  • Gan, P.P., Li, S.F.Y., 2012. Potential of plant as a biological factory to synthesize gold and silver nanoparticles and their applications. Rev. Environ. Sci. Biotechnol. 11, 169–206. https://doi.org/10.1007/s11157-012-9278-7
  • Hussein, N.N., 2019. Antihaemolytic and antimicrobial activity of three types of local plants. Biochem. Cell. Arch. 18, 1721–1726.
  • Jadhav, K., Deore, S., Dhamecha, D., Hr, R., Jagwani, S., Jalalpure, S., Bohara, R., 2018. Phytosynthesis of Silver Nanoparticles: Characterization, Biocompatibility Studies, and Anticancer Activity. ACS Biomater. Sci. Eng. 4, 892–899. https://doi.org/10.1021/acsbiomaterials.7b00707
  • Kalishwaralal, K., Deepak, V., Ram Kumar Pandian, S.B., Kottaisamy, M., BarathManiKanth, S., Kartikeyan, B., Gurunathan, S., 2010. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surfaces B Biointerfaces 77, 257–262. https://doi.org/10.1016/j.colsurfb.2010.02.007
  • Kanipandian, N., Thirumurugan, R., 2014. A feasible approach to phyto-mediated synthesis of silver nanoparticles using industrial crop Gossypium hirsutum (cotton) extract as stabilizing agent and assessment of its in vitro biomedical potential. Ind. Crops Prod. 55, 1–10. https://doi.org/10.1016/j.indcrop.2014.01.042
  • Kanjikar, A.P., Hugar, A.L., Londonkar, R.L., 2018. Characterization of phyto-nanoparticles from Ficus krishnae for their antibacterial and anticancer activities. Drug Dev. Ind. Pharm. 44, 377–384. https://doi.org/10.1080/03639045.2017.1386205
  • Khalandi, B., Asadi, N., Milani, M., Davaran, S., Abadi, A.J.N., Abasi, E., Akbarzadeh, A., 2017. A Review on Potential Role of Silver Nanoparticles and Possible Mechanisms of their Actions on Bacteria. Drug Res. (Stuttg). 67, 70–76. https://doi.org/10.1055/s-0042-113383
  • Khan, Mujeeb, Khan, S.T., Khan, Merajuddin, Adil, S.F., Musarrat, J., Al-Khedhairy, A.A., Al-Warthan, A., Siddiqui, M.R.H., Alkhathlan, H.Z., 2014. Antibacterial properties of silver nanoparticles synthesized using Pulicaria glutinosa plant extract as a green bioreductant. Int. J. Nanomedicine 9, 3551–3565. https://doi.org/10.2147/IJN.S61983
  • Kıvrak, İ., 2015. Analytical Methods Applied to Assess Chemical Composition, Nutritional Value and In Vitro Bioactivities of Terfezia olbiensis and Terfezia claveryi from Turkey. Food Anal. Methods 8, 1279–1293. https://doi.org/10.1007/s12161-014-0009-2
  • Kıvrak, Ş., Kıvrak, İ., Karababa, E., 2018. Analytical evaluation of phenolic compounds and minerals of opuntia robusta j.C. wendl. and opuntia ficus-barbarica a. berger. Int. J. Food Prop. 21, 244–256. https://doi.org/10.1080/10942912.2018.1451342
  • Luqman, S., Dwivedi, G.R., Darokar, M.P., Kalra, A., Khanuja, S.P.S., 2008. Antimicrobial activity of Eucalyptus citriodora essential oil. Int. J. Essent. Oil Ther. 2, 69–75.
  • Mcfarland, J., 1907. An instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. Nephelom. 1176–1178.
  • Mishra, A., Kaushik, N.K., Sardar, M., Sahal, D., 2013. Evaluation of antiplasmodial activity of green synthesized silver nanoparticles. Colloids Surfaces B Biointerfaces 111, 713–718. https://doi.org/10.1016/j.colsurfb.2013.06.036
  • Mittal, J., Singh, A., Batra, A., Sharma, M.M., 2017. Synthesis and characterization of silver nanoparticles and their antimicrobial efficacy. Part. Sci. Technol. 35, 338–345. https://doi.org/10.1080/02726351.2016.1158757
  • Nakkala, J.R., Mata, R., Sadras, S.R., 2017. Green synthesized nano silver: Synthesis, physicochemical profiling, antibacterial, anticancer activities and biological in vivo toxicity. J. Colloid Interface Sci. 499, 33–45. https://doi.org/10.1016/j.jcis.2017.03.090
  • Niño-Martínez, N., Salas Orozco, M.F., Martínez-Castañón, G.A., Torres Méndez, F., Ruiz, F., 2019. Molecular Mechanisms of Bacterial Resistance to Metal and Metal Oxide Nanoparticles. Int. J. Mol. Sci. 20. https://doi.org/10.3390/ijms20112808
  • Patton, T., Barrett, J., Brennan, J., Moran, N., 2006. Use of a spectrophotometric bioassay for determination of microbial sensitivity to manuka honey. J. Microbiol. Methods 64, 84–95. https://doi.org/10.1016/j.mimet.2005.04.007
  • Ramar, M., Manikandan, B., Marimuthu, P.N., Raman, T., Mahalingam, A., Subramanian, P., Karthick, S., Munusamy, A., 2015. Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 140, 223–228. https://doi.org/10.1016/j.saa.2014.12.060
  • Ren, Y. yu, Yang, H., Wang, T., Wang, C., 2016. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract. Phys. Lett. Sect. A Gen. At. Solid State Phys. 380, 3773–3777. https://doi.org/10.1016/j.physleta.2016.09.029
  • Singa, A.N., Ayoub, N., Al-Sayed, E., Martiskainen, O., Sinkkonen, J., Pihlaja, K., 2011. Phenolic constituents of Eucalyptus camaldulensis Dehnh, with potential antioxidant and cytotoxic activities. Rec. Nat. Prod. 5, 271–280.
  • Sütterlin, S., Tano, E., Bergsten, A., Tallberg, A.B., Melhus, A., 2012. Effects of silver-based wound dressings on the bacterial flora in chronic leg ulcers and its susceptibility in vitro to silver. Acta Derm. Venereol. 92, 34–39. https://doi.org/10.2340/00015555-1170
  • Thakur, K., Bala, I., 2017. Evaluation of Effectiveness of Biologically Synthesized Silver Nanoparticles of Eucalyptus globules Leaf Extract against Pathogenic and Acne-inducing Bacteria. J. Nanomed. Nanotechnol. 08. https://doi.org/10.4172/2157-7439.1000443
  • Velmurugan, P., Anbalagan, K., Manosathyadevan, M., Lee, K.J., Cho, M., Lee, S.M., Park, J.H., Oh, S.G., Bang, K.S., Oh, B.T., 2014. Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess Biosyst. Eng. 37, 1935–1943. https://doi.org/10.1007/s00449-014-1169-6
  • Wong-Paz, J.E., Contreras-Esquivel, J.C., Rodríguez-Herrera, R., Carrillo-Inungaray, M.L., López, L.I., Nevárez-Moorillón, G. V., Aguilar, C.N., 2015. Total phenolic content, in vitro antioxidant activity and chemical composition of plant extracts from semiarid Mexican region. Asian Pac. J. Trop. Med. 8, 104–111. https://doi.org/10.1016/S1995-7645(14)60299-6
  • Xia, Q.H., Ma, Y.J., Wang, J.W., 2016. Biosynthesis of silver nanoparticles using Taxus yunnanensis callus and their antibacterial activity and cytotoxicity in human cancer cells. Nanomaterials 6. https://doi.org/10.3390/nano6090160
  • Zahmakiran, M., Özkar, S., 2011. Metal nanoparticles in liquid phase catalysis; From recent advances to future goals. Nanoscale 3, 3462–3481. https://doi.org/10.1039/c1nr10201j