Solanum melongena ve Solanum torvum’un türler arası melezlerinin morfolojik özellikleri

Solanum melongena (L.) ve Solanum torvum (Sw.) türlerinin melezlenmesi sonucu oluşan birkaç interspesifik hibrit bitkinin kısır olduğu rapor edilmiştir. Bu iki türün türler arası melezlerinin morfolojik karakterizasyonu için az sayıda intrespesifik hibrit genotip incelenmiştir. Çalışmada interspesifik genotiplerde morfolojik farklılığı belirlemek amacıyla, Faselis F1 x S. torvum melezlenmesinden elde edilen tohumların in vitro ortamda çimlendirilmesiyle elde edilen 50-63 interspesifik hibrit genotip incelenmiştir. Genotiplerin çoğunda, sürgünlerde antosiyanin oluşumu ve bitkinin farklı organlarında dikenlilik görülmüştür. Genotiplerin yan dal sayıları 1 ve 7 arasında değişmiştir. Yaprak uzunluğu, yaprak genişliği ve loblanma gözlemleri açısından interspesifik hibrit genotiplerin bir kısmı ana ebeveyne, bir kısmı baba ebeveyne yakın olmuş, diğer bölümü ise iki ebeveyn arasında bir değer almıştır. Yaprak altı tüylülüğü en az Faselis F1’de gözlenirken, interspesifik genotiplerdeki tüylülük S. torvum’daki tüylülüğe yakın olmuştur. Faselis F1’in yapraklarında dikenlilik gözlenmezken, interspesifik hibritlerin hepsinde dikenlilik gözlenmiştir. Çiçek durumu, Faselis F1’de tek çiçek veya aynı yerden çıkmış tek çiçek ile basit salkım şeklinde olurken, interspesifik hibrit genotiplerde genelde S. torvum’da olduğu gibi salkım şeklinde olmuştur. Salkımdaki çiçek ve tomurcuk sayısı en az ana ebeveynde, en yüksek bazı interspesifik hibrit genotiplerde gözlenmiştir. İnterspesifik hibrit genotiplerde çanak ve taç yaprak sayısı ile erkek organ sayısı 3 ila 6 arasında değişmiştir. Taç yaprak rengi Faselis F1’de açık menekşe, S. torvum’da beyaz ve interspesifik hibrit genotipte genelde soluk menekşe olmuştur. Erkek ve dişi organ uzunluğu Faselis F1’de en yüksek, interspesifik hibrit genotiplerde S. torvum’dan daha düşük veya daha yüksek olarak gerçekleşmiştir.

Morphological characteristics of interspecific hybrids of Solanum melongena and Solanum torvum

It has been reported that a few interspecific hybrid plants of Solanum melongena (L.) x Solanum torvum (Sw.) were sterile. A small number of the interspecific hybrid genotypes of these species have been examined for morphological characters. In this study, morphological characteristics of 50-63 interspesific genotypes that were obtained by in vitro germination of the seeds produced from Faselis F1 x S. torvum crossing were investigated. Most of these genotypes formed anthocyanin on their shoots, and spines on their different organs. Plant branch number of the genotypes varied between 1 and 7.  Leaf blade length, width and lobes in some of the interspecific genotypes were similar to maternal or paternal parents, and some others were between the two parents. Leaf hair density of interspecific genotypes was higher than Faselis F1 and similar to S. torvum. There were not spines on the leaf of Faselis F1, however, spines were observed on all the interspecific hybrid genotype leaves. Inflorescence type of interspecific genotypes were uniparous, two branches, or three or more branches, while Faselis F1 had single flower or uniparous inflorescence. The bud or flower numbers per inflorescence were minimum in Faselis F1 and maximum in some interspecific genotypes. The corolla, calyx or stamen numbers per flower were 3 to 6 in some interspecific genotypes. The corolla color was violet, white and pale violet in Faselis F1, S. torvum and interspecific genotypes, respectively. While the stamen and pistil lengths of interspecific genotypes were higher or lower than S. torvum, the highest values were obtained from Faselis F1.

___

  • Ali M, Fujieda K (1990) Cross compatibility between eggplant (Solanum melongena L.) and wild relatives. Japanese Society for Horticultural Science 58: 977-984.
  • Biesiada A, Tomczak A (2012) Biotic and abiotic factors affecting the content of the chosen antioxidant compounds in vegetables. Vegetable Crops Research Bulletin 76: 55-78.
  • Bletsos F, Roupakias DG, Tsakstsira ML, Scalttsoyjannes AB, Thanassoulopoulos CC (1998) Interspecific hybrids between three eggplant (Solanum melongena L.) cultivars and two species (Solanum torvum Sw. and Solanum Sisymbriifolium Lam.). Plant Breeding 117: 159-164.
  • Bletsos F, Roupakias DG, Thanassoulopoulos CC (2000) Gene transfer from wild Solanum species to eggplant cultivars: prospects and limitations. Acta Horticulturae (Proc. XXV IHC-Part 12, 522 ISHS) 71-78.
  • Bletsos F, Thanassoulopoulos C, Roupakias D (2003) Effect of grafting on growth, yield, and Verticillium wilt of eggplant. HortScience 38: 183-186.
  • Collonnier C, Fock I, Kashyap V, Rotino GL, Daunay MC, Lian Y, Mariska IK, Rajam MV, Servaes A, Ducreux G, Sihachakr D (2001) Applications of biotechnology in eggplant. Plant Cell, Tissue and Organ Culture 65: 91-107.
  • Çürük S, Doksöz S, Külahlıoğlu İ (2014) Diploid Ve Tetraploid İnterspesifik Hibrit Patlıcan (Solanum melongena x Solanum torvum) Genotiplerinde Aşının Çiçek Tozu Verimliliği ve Bitki Morfolojisi Üzerine Etkisi. Kesin sonuç Raporu (Proje No:112O751, Tübitak-Tovag), s. 33.
  • ECPGR (European Cooperative Programme for Plant Genetic Resources) (2008) Minimum descriptors for Eggplant, Capsicum (sweet and hot pepper) and Tomato. http://www.ecpgr.cgiar.org/working-groups/solanaceae/solanaceae-working-group-documents-and-publications-of-interest/. Erişim 7 Ağustos 2017.
  • IBPGR (The International Board for Plant Genetic Resources) (1990) Descriptors for Eggplant, Rome Italy, pp. 23.
  • Kashyap V, Kumar SV, Collonier C, Fusari F, Haicour R, Rotino GL, Sihachakr D, Rajam MV (2003) Biotechnology of eggplant 97: 1-25.
  • Kumchai J, Wei YC, Lee CY, Chen FC, Chin SW (2013) Production of interspecific hybrids between commercial cultivars of the eggplant (Solanum melongena L.) and its wild relative S. torvum. Genetics and Molecular Research 12(1): 755-764.
  • McCammon KR, Honma S (1983) Morphological and cytogenetic analysis of an interspecific hybrid eggplant, Solanum melongena x Solanum torvum. HortScience 18: 894-895.
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum 15: 473-497.
  • Nisha P, Abdul Nazar P, Jayamurthy, P (2009) A comparative study on antioxidant activities of different varieties of Solanum melongena. Food and Chemical Toxicology 47: 2640-2644.
  • Plazas M, Vilanova P, Gramazio S, Rodríguez BA, Fita A, Herraiz FJ, Ranil R, Fonseka R, Niran L, Fonseka H, Kouassi B, Kouassi A, Prohens J (2016) Interspecific hybridization between eggplant and wild relatives from different genepools. Journal of the American Society for Horticultural Science 141: 34-44.
  • Sihachakr D, Haicour R, Chaput MH, Barrientos E, Ducreux G, Rossignol L (1989) Somatic hybrid plants produced by electrofusion between Solanum melongena L. and Solanum torvum Sw. Theoretical and Applied Genetics 77: 1-6.
  • Somawathi KM, Rizliya V, Wijesinghe DGNG, Madhujith WMT (2014) Antioxidant activity and total phenolic content of different skin coloured brinjal (Solanum melongena). Tropical Agricultural Research 26 (1): 152-161.
  • Sudheesh S, Sandhya C, Koshy AS, Vijayalakshmi NR (1999) Antioxidant activity of flavonoids from Solanum melongena. Phytotherapy Research 13: 393–396.
  • Topçu V, Boyacı F, Aktaş H (2016) Kendileme Yoluyla Saflaştırılmış Bazı Patlıcan Hatlarının Morfolojik ve Moleküler Karakterizasyonu. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi 11 (1): 43-53.
  • TÜİK (2017) www.tuik.gov.tr. Erişim 01 Mart 2017.
Mediterranean Agricultural Sciences-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1988
  • Yayıncı: Akdeniz Üniversitesi