Pomza agregası ile üretilen düşük dayanımlı beton blokların bazı fiziksel ve mekanik özelliklerine hidrofob kilin etkileri

Alınış tarihi 3 Ekim 2012 Düzeltilme tarihi 6 Aralık 2012 Kabul tarihi 10 Aralık 2012 Hafif beton bloklar, işlenmiş doğal malzeme veya işlenmemiş gözenekli malzemeler kullanılarak üretilebilir. Bu çalışma, taşıyıcı veya taşıyıcı olmayan elemanların inşasında kullanılan hafif beton blokların yapımı için pomza hafif agregası ve hidrofob kilin kullanımını kapsamaktadır. Bu makalede pomza agregası Erzurum-Pasinler yöresinden temin edilmiş ve düşük dayanımlı beton blokların bazı fiziksel ve mekanik özellikleri incelenmiştir. Deney sonuçlarına göre, kuru birim ağırlığı 855 ve 1040 kg m-3arasında değişmekte iken, su emme % 15-% 22 arasında, numunelerinin 28 günlük basınç dayanımı 4,75 den 8,5 MPa arasında değişmektedir. Araştırmadan elde edilen sonuçlar, % 10 hidrofob kil katkısı ile üretilen örneklerin yük taşıyıcı uygulamalarda kabul edilebilecek yeterli dayanım ve düşük su emmeye sahip olduğunu göstermiştir. Düşük birim ağırlığından dolayı üretilen örnekler kırsal alanlardaki tarımsal yapıların yapımında depreme dayanıklı olmalarını da sağlamak için kullanılabilir

The effects of hydrophobe clay on some physical and mechanical properties of the low-strength concrete blocks produced with pumice aggregate

Light-weight concrete blocks (LCB) can be produced by using processed natural material or unprocessed porous materials. The present study covers the use of pumice lightweight aggregate (PLA) and hydrophobe clay to produce the LCB for use in construction of load-bearing or non-load bearing structural members. Pumice aggregate (PA) were supplied from Erzurum-Pasinler region. Some physical and mechanical properties of the specimens produced were investigated in this study. According to experimental results, while dry unit weight varies between 855 and 1040 kg m-3 with water absorptions between 15%-22%, 28-day compressive strength ranged from 4.75 to 8.5 MPa. Experimental test results showed that the specimens produced with 10% hydrophobe clay addition have sufficient strength and lower water absorption to be considered load-bearing block applications. Due to low unit weight, such specimens can be used to build earthquake-resistant agricultural structures in rural areas.

___

  • ACI Committee 211.2-91 (1992) Standard practice for selecting proportions for structural lightweight aggregate concrete. American Concrete Institute, Committee 211Report, Michigan.
  • ACI Committee 213 (1970) Guide for structural lightweight aggregate concrete. American Concrete Institute, Committee 213 Report, Paris.
  • Al-Jabri KS, Hago AW, Al-Nuaimi AS, Al-Saidy AH (2005) Concrete blocks for thermal insulation in hot climate. Cement and Concrete Research 35: 1472–1479.
  • Bomhard H (1980) Lightweight concrete structures, potentialities, limits and realities. The Concrete Society, The Construction Press, New York.
  • Brown BJ (1990) Report on concrete mix design for lightweight masonry units using yali pumice coarse and fine aggregates. Report no: 89/3408D/ 2923, STATS Scotland, East Kilbride, Scotland.
  • Chandra S, Berntsson L (2002) Light weight aggregate concrete: Science, technology and applications. William Andrew Publishing, New York.
  • Demirboga R, Orung I, Gul R (2001) Effect of expanded perlite aggregate and mineral admixtures on the compressive strength of low-density concretes. Cement and Concrete Research 31: 1627-32.
  • Gunduz L (2005) A technical report on light weight aggregate masonry block manufacturing in Turkey. Suleyman Demirel University, Isparta.
  • Gunduz L (2008) Use of quartet blends containing fly ash, scoria, perlitic pumice and cement to produce cellular hollow light weight masonry blocks for non-load bearing walls. Construction and Building Materials 22: 747–54.
  • Khandaker M, Hossain A (2004) Properties of volcanic pumice based cement and light weight concrete. Cement and Concrete Research 34: 283–91.
  • Kurt ZN (2009) Investigation of the strength properties of surfactant modified clay. MS Thesis, Atatürk University, Institute of Science, Erzurum.
  • Lewis DW (1966) Lightweight concrete and aggregates. ASTM Special Technical Publication 169: 359-375.
  • Sahin S, Orung I, Okuroglu M, Karadutlu Y (2008) Properties of prefabricated building materials produced from ground pumice aggregate and binders. Construction and Building Materials 22: 989–992.
  • Sari D, Pasamehmetoglu AG (2005) The effects of gradation, admixture on the pumice light weight aggregate concrete. Cement and Concrete Research 35: 936–42.
  • Somayaji S (1995) Civil Engineering Materials. Prentice Hall, New Jersey.
  • Topcu IB (2001) Semi-light weight concretes produced by volcanic slags. Cement and Concrete Research 27:15–21.
  • TS 706 (1980) Concrete aggregates. Turkish Standards Institute (Turkish Codes), Ankara.
  • TS 3624 (1981) Test method for determination the specific gravity, the absorption water and the void ratio in hardened concrete. Turkish Standards Institute (Turkish Codes), Ankara.
  • TS 2823 (1986) Structural members of pumice concrete. Turkish Standards Institute (Turkish Codes), Ankara.
  • TS 3114 (1990) Determination of compressive strength of concrete test specimens. Turkish Standards Institute (Turkish Codes), Ankara.
  • TS 3234 (1978) Mixing, placing, curing, mix design and methods of pumice concrete. Turkish Standards Institute (Turkish Codes), Ankara.
  • TS EN 992 (1998) Determination of the dry density of light weight aggregate concrete with open structure, this standard, specifies a method of determining the dry density of light weight aggregate concrete with open structure. Turkish Standards Institute (Turkish Codes), Ankara.