Özel tip mısır genotiplerinin farklı gelişme dönemlerinde fizyolojik özellikler ile kalite özellikleri için heterosis, kalıtım derecesi ve gen etkilerinin incelenmesi

Mısır bitkisi genetik araştırmalarda kullanılan en önemli model bitkilerden birisidir. Normal tane yapısına sahip mısır genotiplerinde çeşitli özelliklerin kalıtımını konu edinen çok sayıda araştırma bulunmasına karşın, özel tip mısır genotiplerinde bu araştırmalar sınırlı düzeyde kalmıştır. Bu çalışma özel tip (yüksek yağlı, yüksek proteinli) mısır genotiplerinde bazı agronomik, fizyolojik ve kalite özelliklerinin kalıtımını konu edinmektedir. İki yıllık (2011 ve 2012) olarak yürütülen araştırmada ekimden itibaren 40., 60., 82., 100 ve 122. günlerde 13 agronomik, 9 fizyolojik ve 7 kalite özelliği olmak üzere toplam 29 özellik incelenmiştir. Elde edilen veriler Düzeltilmiş Sapmasız Hesaplama (Adjusted Unbiased Prediction) yöntemiyle eklemeli ve dominans model (Additive + Dominance) kullanılarak analiz edilmiştir. Her bir özellik için vejetasyon evrelerine göre heterosis, kalıtım dereceleri hesaplanarak bu hesaplamalardaki değişim incelenmiştir. Ayrıca heterosise neden olan gen etkileri polar grafik yöntemi ile gösterilmiştir. Araştırma bulguları heterosis ve kalıtım derecesinin vejetasyon süresinde özellik gruplarına göre değişim gösterdiğini ortaya koymuştur. Bitkisel özellikler ve fizyolojik özelliklerin büyük kısmında pozitif yönde ve yüksek derecede heterosis (>%50) olduğu saptanmıştır. Tane protein, karbonhidrat ve yağ içeriğinde de bazı örnekleme tarihlerinde pozitif yönde heterosis olduğu belirlenmiştir. İncelenen özelliklerden 18’inde kalıtım derecesi yüksek bulunmuştur. Heterosise neden olan gen etkilerine ilişkin analizler, bitkisel özellikler ile fizyolojik özelliklerin çoğunda üstün dominans gen etkilerinin rol oynadığını, kalite özelliklerinde ise heterosisin dominant ve eklemeli gen etkileriyle ortaya çıktığını göstermiştir. Yüksek yağlı ve yüksek proteinli mısır genotipleri arasında bazı özellikler için heterosis ve kalıtım derecesi ile gen etki hesaplamalarında farklılıklar olduğu saptanmıştır. Ayrıca incelenen bazı özelliklerle ilgili heterosisin farklı gelişim evrelerinde değişim gösterdiği anlaşılmıştır.

Investigation of heterosis, heritability and genetic effects for physiological and quality traits in different developmental stages of specialty maize genotypes

Maize is one of the most important model crops used in genetic research. Although there are numerous studies regarding the heritability of various traits in maize, such studies are rather limited on specialty maize genotypes. This study focuses on the heritability of some agronomic, physiological, and quality traits in specialty (high oil, high protein) maize. Data were collected on the 40th, 60th, 82th, 100th, and 122th days from the planting for 13 agronomic, 9 physiological, and 7 quality traits in a 2-year study (2011 and 2012). Additive + Dominance model of the Adjusted Unbiased Prediction method was utilized to analyze the data. For each trait, heterosis and heritability values were computed based on vegetative stages and the variation of these values were investigated. The gene effects inducing heterosis were shown with polar graphics. The results indicated that heterosis and heritability values varied based on trait groups during vegetation period. High (>50%) and positive heterosis values were common for agronomic and physiological traits. Grain protein, carbohydrate and oil contents yielded positive heterosis for some sampling stages. The analyses of the gene effects causing heterosis showed that overdominance effects played a major role on agronomic and physiological traits, while the heterosis for quality traits were mainly under the control of dominance and additive gene effects. High oil and high protein maize genotypes had differences for heterosis, heritability and gene effect computations for some traits. It was understood that heterosis for some traits showed changes in different growth stages.

___

  • Bakr EM (2005) A new software for measuring leaf area, and area damaged by Tetranychus urticae Koch. Journal of Applied Entomology 129(3): 173-175.
  • Bekele A, Rao TN (2013) Heterosis study for grain yield, protein and oil improvement in selected genotypes of maize (Zea mays L). Journal of Plant Sciences 1(4): 57-63.
  • Chen G, Zhu Z, Zhang F, Zhu J (2012) Quantitative genetic analysis station for the genetic analysis of complex traits. Chinese Science Bulletin 57(21): 2721-2726.
  • Gardner CO (1963) Estimation of genetic parameters in cross-pollinated plants and their implications in plant breeding. Statistical Genetics and Plant Breeding, NASNRS Washington D. C. Publication, 982: 228-234.
  • Hallauer AR, Miranda JB (1981) Quantitative genetics in maize breeding. Iowa St. Univ. Press, Ames, IA.
  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57: 1332–1334.
  • Lisec J, Römisch-Margl L, Nikoloski Z, Piepho H-P, Giavalisco P, Selbig J, Gierl A, Willmitzer L (2011) Corn hybrids display lower metabolite variability and complex metabolite inheritance patterns. The Plant Journal 68: 326–336.
  • Mahmood S, Malik SI, Hussain M (2016) Heterosis and combining ability estimates for ear traits and grain yield in maize hybrids. Asian J Agri Biol. 4(4): 91-98.
  • Mittelmann A, Miranda-Filho JB, Monterio de Lima GJJ, Hara-Klein C, Tanaka RT (2003) Potential of the ESA23B Maize populatıon for protein and oil content Improvement. Scientia Agricola 60(2): 319-327.
  • Oliveira JP, Chaves LJ, Duarte JB, Oliveira-Ribeiro K, Brasil EM (2006) Heterosis for oil content in maize populations and hybrids of high quality protein. Crop Breeding and Applied Biotechnology 6: 113-120.
  • Orhun GE (2010) Mısırda (Zea mays) yağ kalitesi ve tane verimi ile ilgili özelliklerde kalıtım analizleri, Doktora Tezi, Namık Kemal Üniversitesi, Fen Bilimleri Enstitüsü, 192 s.
  • R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
  • Rood SB, Major DJ (1981) Diallel analysis of leaf number, leaf development rate, and plant height of early maturing maize. Crop Science 21: 867-873.
  • Rosulj M, Trifunovic S, Husic I (2002) Nine cycles of mass selection for increasing oil content in two maize (Zea mays L) synthetics. Genetics and Mo¬lecular Biology 25: 449-461.
  • Römisch-Margl L, Spielbauer G, Schützenmeister A, Schwab W, Piepho H.P, Genschel U, Gierl A (2010) Heterotic patterns of sugar and amino acid components in developing maize kernels. Theorotical Applied Genetics 120: 369–381.
  • Schön CC, Lee M, Melchinger AE, Guthrie WD, Woodman WL (1993) Mapping and characterization of quantitative trait loci affecting resistance against second-generation European corn borer in maize with the aid of RFLPs. Heredity 70: 648-659.
  • Shanthi P, Satyanarayana E, Reddy GJM (2002) Genetic studies for grain yield and oil improvement in maize. Research on Crops 3(3): 588-591.
  • Swanson-Wagner RA, Jia Y, DeCook R, Borsuk LA, Nettleton D, Schnable PS (2006) All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proceedings of National Academy of Sciences USA, 103: 6805–6810.
  • Tollenaar M, Ahmadzadeh A, Lee EA (2004) Physiological basis of heterosis for grain yield in maize. Crop Science 44: 2086–2094.
  • Veita RA, Waiman D (2010) Exploring the mechanistic bases of heterosis from the perspective of macromolecular complexes. The FASEB Journal 25: 1-7.
  • Watto FM, Saleem M, Ahsan M, Sajjad M, Ali W (2009) Genetic analysis for yield potential and quality traits in maize (Zea mays L.). American-Eurasian Journal of Agriculture Environment Science 6(6): 723-729.
  • Werle AJS, Ferreira FRA, Pinto RJB, Mangolin CA, Scapim CA, Gonçalves LSA (2014) Diallel analysis of maize inbred lines for grain yield, oil and protein content. Crop Breeding and Applied Biotechnology 14: 23-28.
  • Wyss CS, Czyzewicz JR, Below FE (1991) Source-sink control of grain composition in maize strains divergently selected for protein concentration. Crop Science 31: 761-766.
  • Yusuf M, Ado SG, Ishiyaku MF (2009) Heterosis in single crosses of quality protein maize inbred lines, African Crop Science Conference Proceedings Vol. 9. pp. 439 – 445.
  • Zare M, Choukan R, Bihamta MR, Majidi Heravan E, Kamelmanesh MM (2011) Gene action for some agronomic traits in maize (Zea mays L.). Crop Breeding Journal 1(2): 133-141.
  • Zhu J (2003) Diallel analysis for an additive-dominance model with genotype-by- environment interaction effects. In: Kang, M.S., Ed., Handbook of formulas and software for plant geneticists and breeders, Food Products Press, The Haworth Reference Press, Oxford, pp. 39-50.
Mediterranean Agricultural Sciences-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1988
  • Yayıncı: Akdeniz Üniversitesi