ANTALYA’DA TARLA KOŞULLARINDA BERMUDA ÇİMİNİN SU TÜKETİMİ VE BAZI KIYAS BİTKİ SU TÜKETİMİ EŞİTLİKLERİNİN GEÇERLİLİĞİNİN BELİRLENMESİ

Bu tüketimine etkisi ve su tüketiminin tahmini için kıyas bitki su tüketimi hesaplanmasında kullanılan bazı deneyimsel eşitliklerin geçerliliğinin belirlenmesi amaçlanmıştır. Çalışmada A sınıfı buharlaşma kabından iki gün ara ile meydana gelen buharlaşmanın % 100, 75, 50 ve 25’i düzeylerinde sulanan sırasıyla I1, I2, I3 ve I4 olmak üzere dört sulama konusu oluşturulmuştur. Toprak profilindeki nem değişiminin nötron probe aleti ve bitki kök bölgesindeki nem tansiyonunun tansiyometrelerle izlendiği çalışmada, bermuda çiminde sulama düzeylerine bağlı olarak görsel kalite değişimi bir renk skalası kullanılarak mevsim boyunca izlenmiştir. İklimsel veriler kullanılarak çim bitkisi kıyas bitki su tüketiminin farklı yöntemlerle hesaplanmasında IAM.ETo bilgisayar yazılımı kullanılmıştır. Gerçek bitki su tüketimini en iyi tahmin edebilecek kıyas bitki su tüketimi eşitliğinin belirlenmesinde hata kareler ortalaması (HKO) en düşük olan yöntem dikkate alınmıştır. Çalışmada en iyi görsel kalite I1 ve I2 konularından elde edilmiştir. Sulama düzeylerine bağlı olarak I1, I2, I3 ve I4 konularında deneme süresince ortalama günlük su tüketim değerleri sırasıyla 9.80, 7.43, 5.10 ve 2.82 mm olarak belirlenmiştir. Antalya koşullarında A sınıfı buharlaşma kabından olan buharlaşmanın %75’i düzeyinde sulama yapılmasının bermuda çimi için yeterli olacağı, anılan çim bitkisi için su tüketimi tahmininde kıyas bitki su tüketimi eşitliklerinin kullanılması durumunda en iyi tahmin eşitliklerinin sırasıyla FAO Radyasyon, Orijinal Penman ve Penman-Monteith eşitlikleri olduğu sonuçlarına ulaşılmıştır

Determination of Bermudagrass Evapotranspiration and Validation of Some Reference Evapotranspiration Equations under Open Field Conditions in Antalya

This research was carried out to determine the effects of different irrigation levels on evapotranspiration of bermudagrass and validation of some amprical reference evapotranspiration equations under open field conditions. The experiment consisted of four irrigation treatments: 100, 75, 50 and 25 % of class A pan evaporation (I1, I2, I3 and I4). Soil moisture changing in the soil profile was monitored by a neutron probe and soil mositure tension changing in the root zone was also monitored by tensiometers. Visual quality cahnging as regarded by irrigation levels was monitored with a color scale during the season. IAM.ETo software program was used for computation of reference ET from different equations with the using of meteorological data. The equation which had the lowest root mean square errors (RMS) was considered the best equation for representing actual evapotranspiration under open field conditions. The best visual quality was obtained from I1 and I2 treatments. Average seasonal ETc values for I1, I2, I3 and I4 were determined as 9.80, 7.43, 5.10 and 2.82 mm/day, respectively. The amount of irrigation water more than 75% of evaporation measured in Class A pan does not affect visual quality of turfgrass and is enough to sustain an acceptable turfgrass quality under Antalya conditions. According to the above mentioned criteria, FAO Radiation method was chosen the best equation and this fallowed by Original Penman and Penman-Monteith equations, respectively.

___

  • Al-Faraj, A., Meyer, G.E., Schade, G.R. and Horst G.L., 2000. Dynamic Analysis of Moisture Stres in Tall Fescue (Fetusca arundinacea Schreb.) using Canopy Temperature, Irradiation avd Vapor deficit. Trans. of ASAE, 43 (1) : 101-109.
  • Allen, R.G., Pereira, L.S., Raes, D. and Smith, M., 1998. Crop Evapotranspiration:Guidelines for Computing Crop Water Requirements. Irrigation and Drainage Paper 56, FAO, Rome, Italy.
  • Allen, R.G., Jensen, M.E., Wright, J.L. and Burman, R.D., 1989. Operational Estimates of Reference Evapotranspiration. Agronomy J. 81: 650-662.
  • Alves, I., Fontes, J.C. and Pereira, L.S., 2000. Evapotranspiration Estimation from Infrared Surface Temperature I : The performance of the Flux Equation. Trans. of ASAE, 43(3): 591-598
  • Aronson, L.J., Gold, A.J., Hull, R.J. and Cisar, J.L., 1987. Evapotranspiration of Cool Season Turfgrasses in the Humid Northeast. Agronomy J. 79: 901-905.
  • Arslan, M. ve Cakmakcı, S., 2004. Farklı Çim Tür ve Çeşitlerinin Antalya İli Sahil Koşullarında Adaptasyon Yeteneklerinin ve Performanslarının Belirlenmesi. Akd. Üniv. Zir. Fak. Dergisi, 17 (1): 31-42.
  • Bastug, R. and Buyuktas, D., 2003. The Effects of Different Irrigation Levels Applied in Golf Courses on Some Quality Characteristics of Turfgrass. Irrig. Sci., 23: 87-93.
  • Blaney, H.F. and Criddle, W.D., 1950. Determining Consumptive Water Use and Irrigation Water Requirements. USDA Technical Bulletin No.1275.
  • Bonos, S.A., and Murphy, J.A., 1999. Growth Responses and Performance of Kentucky Bluegrass under Summer Stress. Crop Science, 39: 770-774.
  • Carrow, R.N., Shearman R.C. and Watsoni J.R., 1990. Turfgrass. In:Irrigation of Agricultural Crops (B.A. Stewart and D.R. Neilsen. Co-editors). Madison, Wisconsin, USA. pp 889-919.
  • Dodds, P.E., Wayne, S.M. and Barton A., 2005. A Review of Methods to Estimate Irrigated reference Crop Evapotranspiration across Australia. CRC for Irrigation Futures Technical Report No.04/05, 48pp.
  • Doty, J.A., Braunworth, W.S., Tan, Jr.S., Lombard, P.B. and William, R.D., 1990. Evapotranspiration of Cool-Season Grasses Grown with Minimal Maintenance. HortSci. 25(5): 529-531.
  • Donatelli, M., Bellocchi, G. and Carlini, L., 2006. Sharing Knowledge Via Software Components:Models on Reference Evapotranspiration. European Journal of Agronomy, 24: 186-192.
  • Doorenbos, J. and Pruitt, W.O., 1977. Guidelines for Predicting Crop Water Requirements. Irrigation and Drainage Paper 24, FAO, Rome.
  • Fry, D.J., and Butler, D.J., 1989. Responses of Tall and Hard Fescue to Deficit Irrigation. Crop Sci., 29: 1536-1541.
  • Garcia, M., Raes, D., Allen, R.G. and Herbas, C., 2004. Dynamics of Reference Evapotranspiration in the Bolivian Highlands(Altiplano). Agricultural and Forest Meteorology, 125:67-82.
  • Garrot, D.J. and Mancino, C.F., 1994. Consumptive Water Use of Three Intensively Managed Bermudagrasses Growing under Arid Conditions. Crop Sci., 34: 215-221.
  • Gold, A.J., Aranson,L.J. and Hull, R.J., 1987. Cool- Season Turfgrass Responses to Drought Stres. Crop. Sci. 27: 1261-1266.
  • Güngör, Y., Erözel, A.Z. ve Yıldırım, O., 1996. Sulama. Ankara Üniv. Ziraat Fak. Yayın No:1443, Der Kitabı No:424, Ankara, 295s.
  • Hargreaves, G.H., 1974. Estimation of Potential and Crop Evapotranspiration. Trans. of ASAE, 17: 701-704.
  • Irmak, S., Allen, R.G. and Whitty, E.B., 2003. Daily Grass and Alfalfa Reference Evapotranspiration estimates and Alfalfa to Grass Evapotranspiration Ratios in Florida. Journal of Irrig. and Drain. Engineering-ASCE, 129(5): 360-370.
  • İkiz, F., Püskülcü, H. ve Eren, S., 1996. İstatistiğe Giriş. Barış Yayınları. Fakülteler Kitabevi, 435s.
  • Jensen, M.E., 1973. Consumptive Use of Water and Irrigation Water Requirements. ASCE Irrigation and Drain. Div. New York, 215pp.
  • Jensen, M.E., Burman R.D. and Allen, R.G., 1990. Evapotranspiration Requirements. ASCE Manuals and Reports on Engineering Practice, No.70, New York.
  • Jalali-Farahani, H.R., Slack, D.C., Kopec, D.M. and Matthias, A.D., 1993. Crop Water-Stress Index Models For Bermudagrass Turf - A Comparison. Agronomy J., 85(6): 1210-1217
  • Kanber, R., 2002. Sulama. Çukurova Üniv. Ziraat Fak. Gen. Yayın No:174, Ders Kitapları Yayın No:52, Adana, 530s.
  • Karcher, D.E. and Richardson, M.D., 2003. Quantifying Turgrass Color Using Digital Image Analysis. Crop Sci., 43: 943-951.
  • Kjelgaard, J.F., Stockle, C.O. and Evans, R.G., 1996. Accuracy of Canopy Temperature Energy Balance for Determining Daily Evapotranspiration. Irrig. Sci., 16:149-157.
  • Kırda, C., Van Cleemput, O. and Moutonnet, P., 1996. Plant Nutrient and Water Balance Studies Under Legume-Creal Rotation Systems. Nuclear Methods for Plant Nutrients and Water Balance Studies. IAEA, pp. 11-2,. Vienna.
  • Kneebone, W.R., Kopec, D.M. and Mancino, C.F., 1992. Water Requirement and Irrigation in:Turfgrass (D.V. Waddington, R.N. Carrow and R.C. Shearman, co-editors). Agronomy No:32, ASA-CSSA-SSSA, Madison, Wisconsin USA, pp.441-473.
  • Kneebone, W.R. and Pepper, I.L., 1982. Consumptive Water Use by Sub-Irrigated Turfgrass under Desert Conditions. Agronomy Journal, 74 : 419- 423.
  • Kopp, L.K. and Guillard, K., 2002. Clipping Management and Nitrogen Fertilization of Turfgrass:Growth, Nitrogen Utilization and Quality. Crop Sci., 42: 1225-1231.
  • Lecina, S., Martinez-Cob, A., Perez, P.J., Villalobos, F.J. and Baselga, J.J., 2003. Fixed Versus Variable Bulk Canopy Resistance for Reference Evapotranspiration Estimation Using The Penman-Monteith Equation under Semiarid Conditions. Agric. Water. Management, 60: 181- 198.
  • Martin, D.L., Wehner, D.J. and Throssell, C.S., 1994. Models For Predicting The Lower Limit Of The Canopy-Air Temperature Difference Of 2 Cool- Season Grasses. Crop Science, 34 (1): 192-198.
  • Olufayo, A., Baldy, C. and Ruelle, P., 1996. Sorghum Yield, Water Use and Canopy Temperatures under Different Levels of Irrigation. Agicultural Water Management, 30:77-90.
  • Penman, H.L., 1948. Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of Royal Society London. Ser. A, 193: 120-145.
  • Priestley, C.H.B. and Taylor, R.J., 1972. On the Assesment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review, 100: 81-92.
  • Reginato, R.J., 1983. Field Quantification of Crop Water Stress. Trans. of the ASAE, 26: 772-775.
  • Richie, W.E., Green, R.L., Klein, G.J. and Hartin, J.S., 2002. Tall Fescue Performance Influenced by Irrigation Scheduling, Cultivar, and Moving Height. Crop Science, 42: 2011-2017.
  • Sarı, M., Aksoy, T., Köseoğlu, T., Kaplan, M., Kılıç, Ş. ve Pilanalı, N., 1993. Akdeniz Üniversitesi Yerleşim Alanının Detaylı Toprak Etüdü ve İdeal Arazi Kullanım Planlaması. Akdeniz Üniv. Yayınları, Antalya, 245pp.
  • Steduto, P. and Snyder, R.L., 1998. IAM_ETo Software Program and User’s Guide. Options Mediterraneennes(Editted by The Water Use Efficiency Network), Series B: Research and Analysis, No.20, CIHEAM /IAM Bari, Italy.
  • Sumner, D.M. and Jacobs, J.M., 2005. Utility of Penman-Monteith, Priestley-Taylor Reference Evapotranspiration and Pan Evaporation Methods to Estimate Pasture Evapotranspiration. Journal of Hydrology, 308: 81-104.
  • Temesgen, B., Eching, S., Davidoff, B. and Frame, K., 2005. Comparison of Some Reference Evapotranspiration Equations for California. J. Irrig. and Drain. Eng.-ASCE, 131: 73-84.
  • Throssell, C.S., Carrow, R.N. and Milliken, G.A., 1987. Canopy Temperature Based Irrigation scheduling Indices for Kentucky Bluegrass Turf. Crop Sci., 27: 126-131.
  • Turgeon, A.J., 1980. Turfgrasses Management. Reston Publishing Company Inc., A Pretince-Hall Company reston Virginia.
  • Utset, A., Fare, I., Martinez-Cob, A. and Cavero, J., 2004. Comparing Penman-Monteith and Priestley-Taylor Approaches as Reference Evapotranspiration Inputs for Modelling Maize Water Use under Mediterranean Conditions. Agricultural Water Management, 66: 205-219.
  • Ventura, E., Spano, D., Duce, P. and Snyder, R.L., 1999. An Evaluation of Common Evapotranspiration Equations. Irrig. Sci., 18: 163-170.
  • Wilde, S.A. and Voigt, G.K., 1977. Munsell Color Chart for Plant Tissues. Munsel Color, Gretagmacbeth, New Windsor, New York.
  • Zhao, C., Nan, Z., Cheng, G., 2005. Evaluating Methods of Estimation and Modelling Spatial Distribution of Evapotranspiration in the Middle Heihe River Basin, China. American Journal of Environmental Sci., 1 (4): 278-285.