Influence of Heat Shock Protein (HSP-70) Enhancing Compound From Red Alga (Porphyridium cruentum) for Augmenting Egg Production in Copepod Culture – A New In Silico Report

The present study reports in silico investigation of bioactive compounds from marine microalgae capable of escalating copepod fecundity potential through enhanced heat shock protein (HSP-70) production. The structure of ligand (bioactive compounds from microalgae) and hsp-70 obtained from the databases of PubChem and Protein Data Bank (PDB), respectively. Molecular Docking was performed by GOLD software and ligand interaction pathways using web server MANORAA. Fourteen bioactive compounds showed good biding interaction with specific protein HSP-70 and seven of these compounds showed high hydrogen bond interaction with key amino acids (phenylalanine, tyrosine and tryptophan). The highest binding energy of 50.21 is recorded in the bioactive compound, arachidonic acid from the red alga Porphyridium cruentum TYR 167 involved in the biosynthesis pathway of phenylalanine, tyrosine and tryptophan also showed specific target site of tryptophan synthase (4.2.1.20). Results suggest with P. cruentum feed copepod culture could boost their fecundity leading to high density culture.

___

  • Ahern, T. J., Katoh, S., & Sada, E. (1983). Arachidonic acid production by the red alga Porphyridium cruentum. Biotechnology and Bioengineering, 25(4): 1057-1070. https://doi.org/10.1002/bit.260250414
  • Altaff, K. (2020) Indigenous live feed for aqua hatchery larval rearing of finfish and shellfish: A review. International Journal of Zoological Investigations, 6(1): 162-173. https://doi.org/10.33745/ijzi.2020.v06i01.013
  • Aman, S. & Altaff, K. (2004). Biochemical profile of Heliodiaptomus viduus, Sinodiaptomus (Rhinediaptomus) indicus, and Mesocyclops aspericornis and their dietary evaluation for postlarvae of Macrobrachium rosenbergii. Zoological Studies, 43(2): 267-275.
  • Anandan, P., Krishnamurthy, R. & Altaff, K. (2013). Studies on different stages of post embryonic development of cyclopoid copepod Apocyclops dengizicus. International Journal of Current Microbiology and Applied Sciences, 2(2), 20-27.
  • Antia, N. J., Desai, I. D. & Romilly, M. J. (1970). The tocopherol, vitamin K, and related isoprenoid quinone composition of a unicellular red alga (Porphyridium cruentum). Journal of Phycology, 6(3): 305-312. https://doi.org/10.1111/j.1529-8817.1970.tb02398.x
  • Aruda, A. M., Baumgartner, M. F., Reitzel, A. M. & Tarrant, A. M. (2011). Heat shock protein expression during stress and diapause in the marine copepod Calanus finmarchicus. Journal of Insect Physiology, 57(5): 665-675. https://doi.org/10.1016/j.jinsphys.2011.03.007
  • Bandarra, N. M., Pereira, P. A., Batista, I. & Vilela, M. H. (2003). Fatty acids, sterols and α‐tocopherol in Isochrysis galbana. Journal of Food Lipids, 10(1): 25-34. https://doi.org/10.1111/j.1745-4522.2003.tb00003.x
  • Budiman, K., Kannt, A., Lyubenova, S., Richter, O. M. H., Ludwig, B., Michel, H., & MacMillan, F. (2004). Tyrosine 167: The origin of the radical species observed in the reaction of cytochrome c oxidase with hydrogen peroxide in Paracoccus denitrificans. Biochemistry, 43(37): 11709-11716. https://doi.org/10.1021/bi048898i
  • Cohen, Z. & Heimer, Y. M. (1992). Production of polyunsaturated fatty acids (EPA, ARA, and GLA) by the microalgae Porphyridium and Spirulina (pp. 243-273). In: Kyle, D. J., Ratledge, C. (Eds.), Industrial Applications of Single Cell Oils. USA: AOCS Publishing, CRC Press.
  • De Roeck-Holtzhauer, Y., Quere, I. & Claire, C. (1991). Vitamin analysis of five planktonic microalgae and one macroalga. Journal of Applied Phycology, 3(3): 259-264. https://doi.org/10.1007/BF00003584
  • Hansen, B. W. (2017) Advances using copepods in aquaculture. Journal of Plankton Research, 39(6): 972–974. https://doi.org/10.1093/plankt/fbx057
  • Lavens, P. & Sorgeloos, P. (1996). Manual on the production and use of live food for aquaculture (No. 361). Food and Agriculture Organization (FAO). 295p.
  • Li, K. & Xu, E. (2008). The role and the mechanism of γ-aminobutyric acid during central nervous system development. Neuroscience Bulletin, 24(3): 195. https://doi.org/10.1007/s12264-008-0109-3
  • Mao, T. K., Water, J. V. D. & Gershwin, M. E. (2005). Effects of a Spirulina-based dietary supplement on cytokine production from allergic rhinitis patients. Journal of Medicinal Food, 8(1): 27-30. https://doi.org/10.1089/jmf.2005.8.27
  • Morse, D. E., Hooker, N., Duncan, H. & Jensen, L. (1979). γ-Aminobutyric acid, a neurotransmitter, induces planktonic abalone larvae to settle and begin metamorphosis. Science, 204(4391): 407-410. https://doi.org/10.1126/science.204.4391.407
  • Nilsson, B., Jepsen, P. M., Rewitz, K. & Hansen, B. W. (2014). Expression of hsp70 and ferritin in embryos of the copepod Acartia tonsa (Dana) during transition between subitaneous and quiescent state. Journal of Plankton Research, 36(2): 513-522. https://doi.org/10.1093/plankt/fbt099
  • Oba, Y., Kato, S. I., Ojika, M. & Inouye, S. (2009). Biosynthesis of coelenterazine in the deep-sea copepod, Metridia pacifica. Biochemical and Biophysical Research Communications, 390(3): 684-688. https://doi.org/10.1016/j.bbrc.2009.10.028
  • Obrietan, K., Gao, X. B. & Van Den Pol, A. N. (2002). Excitatory Actions of GABA Increase BDNF Expression via a MAPK-CREB–Dependent Mechanism—A Positive Feedback Circuit in Developing Neurons. Journal of Neurophysiology, 88(2): 1005-1015. https://doi.org/10.1152/jn.2002.88.2.1005
  • Parthasarathy, A., Cross, P. J., Dobson, R. C., Adams, L. E., Savka, M. A. & Hudson, A. O. (2018). A three-ring circus: metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Frontiers in Molecular Biosciences, 5(29): 1-30. https://doi.org/10.3389/fmolb.2018.00029
  • Petkeviciute, E., Kania, P. W. & Skovgaard, A. (2015). Genetic responses of the marine copepod Acartia tonsa (Dana) to heat shock and epibiont infestation. Aquaculture Reports, 2: 10-16. https://doi.org/10.1016/j.aqrep.2015.04.001
  • Plaza, M., Herrero, M., Cifuentes, A. & Ibanez, E. (2009). Innovative natural functional ingredients from microalgae. Journal of Agricultural and Food Chemistry, 57(16): 7159-7170. https://doi.org/10.1021/jf901070g
  • Pulz, O. & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6): 635-648. https://doi.org/10.1007/s00253-004-1647-x
  • Raposo, D. J. M. F., de Morais, R. M. S. C. & de Morais, A. M. M. B. (2013). Health applications of bioactive compounds from marine microalgae. Life Sciences, 93(15): 479-486. https://doi.org/10.1016/j.lfs.2013.08.002
  • Rhee, J. S., Raisuddin, S., Lee, K. W., Seo, J. S., Ki, J. S., Kim, I. C., Park, H. G. & Lee, J. S. (2009). Heat shock protein (Hsp) gene responses of the intertidal copepod Tigriopus japonicus to environmental toxicants. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 149(1): 104-112. https://doi.org/10.1016/j.cbpc.2008.07.009
  • Tartarotti, B. & Torres, J. J. (2009). Sublethal stress: impact of solar UV radiation on protein synthesis in the copepod Acartia tonsa. Journal of Experimental Marine Biology and Ecology, 375(1-2): 106-113. https://doi.org/10.1016/j.jembe.2009.05.016
  • Tsitsa-Tzardis, E., Patterson, G. W., Wikfors, G. H., Gladu, P. K. & Harrison, D. (1993). Sterols of Chaetoceros and Skeletonema. Lipids, 28(5): 465-467. https://doi.org/10.1007/BF02535946
  • Vijayaraj, R., Altaff, K., Rosita, A. S., Ramadevi, S. & Revathy, J. (2020). Bioactive compounds from marine resources against novel corona virus (2019-nCoV): In silico study for corona viral drug. Natural Product Research, In press. https://doi.org/10.1080/14786419.2020.1791115
  • Vijayaraj, R., Sri Kumaran, N., Altaff, K., Ramadevi, S. & Sherlin Rosita, A. (2019). In silico pharmacokinetics and molecular docking of novel bioactive compound (11-methoxy-2-methyltridecane-4-ol) for inhibiting carbohydrates hydrolyzing enzyme. Journal of Biologically Active Products from Nature, 9(6): 445-456. https://doi.org/10.1080/22311866.2020.1714478
  • Vu, M. T. T., Hansen, B. W. & Kiørboet, T. (2017). The constraints of high density production of the calanoid copepod Acartia tonsa Dana. Journal of Plankton Research, 39(6): 1028–1039. https://doi.org/10.1093/plankt/fbx056
  • Zhang, W., Culley, D. E., Hogan, M., Vitiritti, L. & Brockman, F. J. (2006). Oxidative stress and heat-shock responses in Desulfovibrio vulgaris by genome-wide transcriptomic analysis. Antonie Van Leeuwenhoek, 90(1): 41-55. https://doi.org/10.1007/s10482-006-9059-9