Sac Metal Şekillendirmede Katı-Kabuk Elemanı ile Buruşmanın Tahmini

Sac şekillendirme işlemlerinde buruşma kusurların tahmininde sonlu elemanlar yöntemi ve kabuk elemanları kullanılmaktadır. Bu yöntem, yüzey modeli oluşturmada zaman kaybına ve yanlış modellemeden kaynaklanan olası temas hatalarına eğilimlidir. Bu çalışma Ansys Workbench Ls-Dyna ortamında sac parçalar için metal şekillendirme işlemlerinde katı-kabuk elemanların kullanımını incelemektedir. Buruşmaya eğilimli standart bir test parçası için katı-kabuk ağlar oluşturulmuştur. Sac için DP600 malzemesi kullanılmıştır. Şekillendirme araçları arasındaki sürtünme davranışı dikkate alınmıştır. Çeşitli sınır koşulları test edilmiştir. Analiz sonuçları, kabuk analizi sonuçları ve daha önce elde edilen deneysel sonuçlarla karşılaştırılmıştır. Sonuçlar, katı-kabuk eleman kullanımının, kabuk ve katı elemanlara göre buruşma davranışı açısından daha doğru sonuçlar verdiğini göstermektedir.

Prediction of Wrinkling by Solid-Shell Element in Sheet Metal Forming

In this study, the explicit analyses of a forming operation to produce a standard rail part [9, 18] are performed by solid-shell, shell, and solid elements within Ansys Workbench Ls-Dyna environment. Although the results do not exactly fit with the experimentally obtained part, it is shown that the solid-shell element yields the best result in terms of wrinkling. The solution obtained by solid-shell element is in good accordance with the result obtained by Neto et al.[18]. The shell and solid elements cannot predict the instability wrinkling behavior as solid-shell element does. Also, it can be deduced that solid-shell element is more computationally effective than shell element.

___

  • Makinouchi, A., Teodosiu, C. 2001, Numerical methods for prediction of geometrical defects in sheet metal forming, in: Proceedings of the First M.I.T. Conference on Computational Fluid and Solid Mechanics, M.I.T., Cambridge, Ma, USA, pp. 21–25.
  • Kawka, M., Olejnik L., Rosochowski A., Sunaga H., Makinouchi A., 2001, J. Mater. Process. Technol. 109, 283–289.
  • Wagoner, R.H., 2002, Fundamental aspects of springback in sheet metal forming, in: Proceedings of the NUMISHEET, vol. I, Korea, pp. 13–24.
  • Yamamura, N., Kuwabara T., Makinouchi A., Banu, M., Teodosiu C., 2000, Springback simulation for hat-bending by the static explicit FEM code, using a new algorithm for cancelling the non-equilibrated forces, in: Proceedings of the 2001 Japanese Spring Conference for the Technology of Plasticity, Tokyo, pp. 101–104.
  • Makinouchi, A., Nakamach,i E., Onate, E., Wagoner R.H.(Eds.), 1993, Numisheet‘93, The Institute of Physics and Chemical Research, Japan.
  • Lee, K.J., Kinzel, G.L., Wagoner R.H. (Eds.), 1996, Numisheet‘96, Michigan.
  • Results of the experimental benchmark tests, 2002, “Growth Programme, Research Project 3DS, Digital Die Design System, Contract G1RDCT-2000-00104, IMS199900005”.
  • Col, A., 2002, Presentation of the “3DS” programme: digital die design system, in: Proceedings of the Numisheet, Jeju Island, Korea, 2002, pp. 643–647.
  • Banu M, Takamura M, Hama T, Naidim O, Teodosiu C, Makinouchi A. 2006, Simulation of springback and wrinkling in stamping of a dual phase steel rail-shaped part. J Mater Process Technol;173:178–84. http://dx.doi.org/10.1016/j.jmatprotec.2005.11.023
  • Lee ES, Youn SK, 2006, Finite element analysis of wrinkling membrane structures with large deformations, Finite Elements in Analysis and Design 42 780 – 791, doi:10.1016/j.finel.2006.01.004
  • Liu J, Wang Z, 2010, Prediction of wrinkling and fracturing in viscous pressure forming (VPF) by using the coupled deformation sectional finite element method Jianguang, Computational Materials Science 48, 381–389. doi:10.1016/j.commatsci.2010.01.029.
  • Wang T, Xu F, Huo Y, Potier-Ferry M, 2019, On the wrinkling and restabilization of highly stretched sheets , International Journal of Engineering Science 136, 1–16. https://doi.org/10.1016/j.ijengsci.2018.12.002.
  • Parentea MPL, Valente F, Jorge RMN, Cardoso RPR, Sousa JRA, 2006, Sheet metal forming simulation using EAS solid-shell finite elements, Finite Elements in Analysis and Design 42, 1137 – 1149. doi:10.1016/j.finel.2006.04.005.
  • Li LM, Peng YH, Li DY, 2011, A stabilized underintegrated enhanced assumed strain solid-shell element for geometrically nonlinear plate/shellanalysis, Finite Elements in Analysis and Design 47, 511–518. doi:10.1016/j.finel.2011.01.001.
  • Schwarze M, Ivaylo N, Reese S, 2011, Sheet metal forming and springback simulation by means of a new reduced integration solid-shell finite element technology, Comput. Methods Appl. Mech. Engrg. 200, 454–476. doi:10.1016/j.cma.2010.07.020.
  • Sena JIV, 2015, Advanced numerical framework to simulate Incremental Forming Processes, PhD Thesis, Universidade de Aveiro..
  • Xue X, Liao J, Vincze G, Sousa J, Barlat F, Gracio J, 2016, Modelling and sensitivity analysis of twist springback in deep drawing of dual-phase steel, Materials and Design, Materials and Design 90, 204–217, http://dx.doi.org/10.1016/j.matdes.2015.10.127
  • Neto DM, Oliveira MC, Santos AD, Alves JL, Menezes LF, Influence of boundary conditions on the prediction of springback and wrinkling in sheet metal forming, International Journal of Mechanical Sciences, Volume 122, March 2017, Pages 244-254. http://dx.doi.org/10.1016/j.ijmecsci.2017.01.037
  • ANSYS Workbench version 2020R2 manuals; 2020.
  • Cheng J, 2015, Investigation of the Formability Enhancement of DP600 Steel Sheets in Electrohydraulic Die Forming, Ms Thesis, University of Windsor, Windsor, Ontario, Canada.