Eklemeli İmalat ile Üretilen Latis Yapılardaki Geometrik Değişimlerin Konuma Bağlı İstatistiksel Modellenmesi

Bu çalışmanın temel içeriği, latis yapıların temel bileşenleri olan çubuk elemanların üzerinde, bir eklemeli imalat tekniği olan malzeme ekstrüzyonu yöntemi kullanılarak üretimi sürecinde meydana gelen geometrik değişimleri, gelişmiş istatistiksel yöntemler kullanarak konuma bağlı olarak modellenmesi ve simülasyon modellerine dahil edilebilirliğinin incelenmesidir. Bu amaçla, çubuk eleman numuneleri farklı çap değerlerinde malzeme ekstrüzyonu yöntemi ile üretilmiştir. Üretilen numuneler dijital kameralı ışık mikroskobu altında incelenmiş ve üretim sonrasında gözlemlenen çapta oluşan değişimlerin ölçümleri yapılarak deneysel veriler elde edilmiştir. Söz konusu değişimler, belirli bir uzay içerisinde konuma bağlı değişimlerin modellenmesinde sıkça kullanılan rassal alan (random field) yöntemi kullanılarak modellenmiştir. Rassal alan yöntemiyle modellenen değişimler, voksel elemanlar kullanılarak sonlu elemanlar modellerine dahil edilmiştir. Malzeme ekstrüzyonu yöntemi ile üretilen çubuk elemanların tek eksenli çekme testleri yapılarak, değişimleri içeren, üretilene benzer sonlu elemanlar modellerinin analizlerinden elde edilen sonuçların doğrulu incelenmiştir. Geliştirilen bu yöntem farklı eklemeli imalat yöntemlerine genişletilebilir, üretim sürecinde geometri özellikleri ve malzeme özelliklerinde gözlemlenen değişimler karakterize edilebilir.

Spatially Dependent Statistical Modeling of Geometric Variations in Additively Manufactured Lattice Structures

The content of this study is the modeling of the geometric variations introduced by the material extrusion method on the strut members of lattice structures using advanced statistical methods based on the spatial dependency and investigating their inclusion to the simulation models. For this purpose, strut member specimens with different diameter values are fabricated using the material extrusion technique. The specimens are examined by a digital light microscope and the measurements are done for the fabricated diameter variations. These variations are characterized using the random field method which is commonly used for modeling the spatially dependent variations. These variations modeled by the random field method are integrated into the finite element models by using voxel elements. The results of the finite element analysis that includes the fabricated specimen models with spatial variations are compared with the tensile test results obtained for the fabricated strut specimens. The developed model can be extended to different additive manufacturing techniques and the variations observed in the fabricated geometry and material properties can be characterized.

___

  • [1] Cahill, S., Lohfeld, S., and McHugh, P. E., 2009, “Finite Element Predictions Compared to Experimental Results for the Effective Modulus of Bone Tissue Engineering Scaffolds Fabricated by Selective Laser Sintering,” J. Mater. Sci. Mater. Med., 20(6), pp. 1255–1262.
  • [2] Gümrük, R., and Mines, R. A. W., 2013, “Compressive Behaviour of Stainless Steel Micro-Lattice Structures,” Int. J. Mech. Sci., 68, pp. 125–139.
  • [3] Qiu, C., Yue, S., Adkins, N. J. E., Ward, M., Hassanin, H., Lee, P. D., Withers, P. J., and Attallah, M. M., 2015, “Influence of Processing Conditions on Strut Structure and Compressive Properties of Cellular Lattice Structures Fabricated by Selective Laser Melting,” Mater. Sci. Eng. A, 628, pp. 188–197.
  • [4] Karamooz Ravari, M. R., Kadkhodaei, M., Badrossamay, M., and Rezaei, R., 2014, “Numerical Investigation on Mechanical Properties of Cellular Lattice Structures Fabricated by Fused Deposition Modeling,” Int. J. Mech. Sci., 88, pp. 154–161.
  • [5] Gorguluarslan, R. M., Choi, S. K., and Saldana, C. J., 2017, “Uncertainty Quantification and Validation of 3D Lattice Scaffolds for Computer-Aided Biomedical Applications,” J. Mech. Behav. Biomed. Mater., 71, pp. 428–440.
  • [6] Melancon, D., Bagheri, Z. S., Johnston, R. B., Liu, L., Tanzer, M., and Pasini, D., 2017, “Mechanical Characterization of Structurally Porous Biomaterials Built via Additive Manufacturing: Experiments, Predictive Models, and Design Maps for Load-Bearing Bone Replacement Implants,” Acta Biomater., 63, pp. 350–368.
  • [7] Lei, H., Li, C., Meng, J., Zhou, H., Liu, Y., Zhang, X., Wang, P., and Fang, D., 2019, “Evaluation of Compressive Properties of SLM-Fabricated Multi-Layer Lattice Structures by Experimental Test and μ-CT-Based Finite Element Analysis,” Mater. Des., 169.
  • [8] Gungor, O. U., and Gorguluarslan, R. M., 2020, “Experimental Characterization of Spatial Variability for Random Field Modeling on Struts of Additively Manufactured Lattice Structures,” Addit. Manuf., 36.
  • [9] Devore, J. L., 1991, “Probability and Statistics for Engineering and the Sciences.,” Biometrics, 47(4), p. 1638.
  • [10] Wang, Y., Li, S., Yu, Y., Xin, Y., Zhang, X., Zhang, Q., and Wang, S., 2020, “Lattice Structure Design Optimization Coupling Anisotropy and Constraints of Additive Manufacturing,” Mater. Des., 196, p. 109089.
  • [11] Persenot, T., Burr, A., Martin, G., … J. B.-I. J. of, and 2019, undefined, “Effect of Build Orientation on the Fatigue Properties of As-Built Electron Beam Melted Ti-6Al-4V Alloy,” Elsevier.
  • [12] Choi, S. K., Canfield, R. A., and Grandhi, R. V., 2007, Reliability-Based Structural Design.
  • [13] Jiang, P., Rifat, M., and Basu, S., 2020, “Impact of Surface Roughness and Porosity on Lattice Structures Fabricated by Additive Manufacturing- A Computational Study,” Procedia Manufacturing, Elsevier B.V., pp. 781–789.
  • [14] Kim, N., Yang, C., Lee, H., and Aluru, N. R., 2019, “Spatial Uncertainty Modeling for Surface Roughness of Additively Manufactured Microstructures via Image Segmentation,” Appl. Sci., 9(6), p. 1093.
  • [15] Ghanem, R. G., and Spanos, P. D., 1991, Stochastic Finite Elements: A Spectral Approach.
  • [16] Sriramula, S., and Chryssanthopoulos, M. K., 2013, “An Experimental Characterisation of Spatial Variability in GFRP Composite Panels,” Struct. Saf., 42, pp. 1–11.
  • [17] Box, G. E. P., Jenkins, G. M., and Reinsel, G. C., 2013, Time Series Analysis: Forecasting and Control: Fourth Edition, John Wiley && Sons, Ltd, Hoboken, NJ.
  • [18] Gungor, O. U., and Gorguluarslan, R. M., 2020, “Experimental Characterization of Spatial Variability for Random Field Modeling on Struts of Additively Manufactured Lattice Structures,” Addit. Manuf., 36, p. 101471.
  • [19] Ghanem, R. G., and Spanos, P. D., 1991, “Spectral Stochastic Finite‐Element Formulation for Reliability Analysis,” J. Eng. Mech., 117(10), pp. 2351–2372.
  • [20]Sudret, B., California, A. D. K.-U. of, Berkeley, U., and 2000, U., “Stochastic Finite Elements and Reliability: A State-of-the-Art Report.”
  • [21] Gorguluarslan, R. M., Park, S.-I., Rosen, D. W., and Choi, S.-K., 2015, “A Multilevel Upscaling Method for Material Characterization of Additively Manufactured Part under Uncertainties,” J. Mech. Des., 11, p. 111408.
  • [22] Park, S. in, Watanabe, N., and Rosen, D. W., 2018, “Estimating Failure of Material Extrusion Truss Structures Based on Deposition Modeling and a Cohesive Zone Model,” Mater. Des., 147, pp. 122–133.