Nöropsikiyatrik Bozukluklarda Fonksiyonel Yakın- Kızılötesi (İnfrared) Spektroskopisine Dayalı Nörofeedback Eğitim Uygulamaları

Fonksiyonel yakın-kızılötesi (infrared) spektrokopisi nöropsikiyatrik araştırmalarda, bilişsel (kognitif) bir aktivite ile ilişkili olarak beyin oksijenizasyonundaki hemodinamik değişiklikleri (oksihemoglobin ve deoksihemoglobin) ölçmeye dayanan ve beyin aktivitesinin gerçek zamanlı değerlendirilmesini sağlayan girişimsel olmayan optiksel bir görüntüleme tekniğidir. Fonksiyonel yakın-kızılötesi (infrared) spektrokopisine dayalı nörofeedback, görsel/işitsel/dokunma uyaranları ile birlikte eğitim seanslarının uygulanması sonucu nöropsikiyatrik bozukluklarda beynin etkin bölgelerindeki hemodinamik değişiklerin, edimsel (operant) koşullanma yolu ile kendi-kendine düzenlenmesini sağlamaktadır. Bu derlemenin amacı, güncel literatür verilerine göre sosyal anksiyete bozukluğu, dikkat eksikliği-hiperaktivite bozukluğu, yeme bozukluğu, şizofreni ve otizm spektrum bozukluğunu içeren nöropsikiyatrik rahatsızlıklarda, fonksiyonel yakın-kızılötesi (infrared) spektrokopisi- nörofeedback eğitimi uygulamalarının ve bu eğitimin olası gelişiminin kapsamlı olarak değerlendirilmesidir. Bu doğrultuda, derlemede Pubmed/MEDLINE, ScienceDirect, Web of Knowledge/Web of Science, EMBASE, EBSCOhost ve Scopus veri tabanlarında taratılan konu ile ilgili güncel literatür verileri incelenmiştir. Bu inceleme sonuçlarına göre, farklı uyaranlar ile bilişsel ve davranışsal temelli olarak beynin fonksiyonel aktivitelerinin kendi kendine düzenlenmesine dayalı fonksiyonel yakın-kızılötesi (infrared) spektrokopisi- nörofeedback eğitim protokollerinin, nöropsikiyatrik bozuklukların tedavilerinde, bozukluk/semptom ve/veya bireye özgün olarak uygulandığında umut verici alternatif bir yöntem olabileceği öngörülmektedir. Bu nedenle, nöropsikiyatrik bozukluklarda etkin nörofeedback tedavi uygulayabilmek için fonksiyonel yakın-kızılötesi (infrared) spektrokopisi- nörofeedback’in klinik etkilerine ek olarak, farklı beyin ağlarındaki (networks) etkilerin altında yatan mekanizmalara ve aktivite değişikliklerine odaklı çalışmalara ihtiyaç duyulmaktadır. Gelecek çalışmalarda, bu yöntem kullanılarak bu bozukluklarda etkilenmiş olan, prefrontal korteks, dorsolateral prefrontal korteks, posterior-superior temporal girus, inferior frontal girus gibi hedef beyin bölgelerindeki hemodinamik değişikler üzerine odaklanılması hedeflenmelidir.

Applications of Functional Near-Infrared Spectroscopy Based Neurofeedback Training in Neurophsychiatric Disorders

Functional near-infrared spectroscopy is a noninvasive optical imaging technique based on measuring hemodynamic changes (oxyhemoglobin and deoxyhemoglobin) in brain oxygenation concerning cognitive activity and enables real-time evaluation of brain activity in neuropsychiatric studies. Functional near-infrared spectroscopy-based neurofeedback provides self-regulation of hemodynamic changes in the effective regions of the brain as a result of the application of training sessions with visual/auditory/tactile stimuli through operant conditioning in neuropsychiatric disorders. The purpose of this review is to evaluate comprehensively over the possible implementations and development of this neurofeedback training in neuropsychiatric disorders including social anxiety disorder, attention deficit-hyperactivity disorder, eating disorder, schizophrenia, and autism spectrum disorder according to recent literature data. Accordingly, the current literature related to the subject scanned in Pubmed/MEDLINE, ScienceDirect, Web of Knowledge/Web of Science, EMBASE, EBSCOhost and Scopus databases were examined in this review. According to the results of this investigation, it is predicted that functional near-infrared spectroscopy-neurofeedback training protocols based on the self-regulation of the brain's functional activities based on the cognitive and behavioral basis with different stimuli might be a promising alternative method when applied to as specific to disorder/symptom and/or individual in the treatment of neuropsychiatric disorders. Thus, functional near-infrared spectroscopy-neurofeedback studies focusing on the effect mechanisms of different brain networks and activity changes are needed in addition to its clinical effects to perform effective neurofeedback treatment in neuropsychiatric disorders. In future studies, it should be aimed to focus on hemodynamic changes in target brain regions such as prefrontal cortex, dorsolateral prefrontal cortex, posterior-superior temporal gyrus, inferior frontal gyrus, which are affected by these disorders by using this method.

___

  • 1. Macnab A. Biomedical applications of near infrared spectroscopy. In Barth A, Haris PI, eds. Biological and Biomedical Infrared Spectroscopy, Amsterdam, Netherlands: IOS Press, 2009; 2:355–402.
  • 2. Ehlis AC, Barth B, Hudak J, et al. Near-infrared spectroscopy as a new tool for neurofeedback training: applications in psychiatry and methodological considerations. Jpn Psychol Res. 2018; 60 (4):225–41.
  • 3. Blume F, Hudak J, Dresler T, et al. NIRS-based neurofeedback training in a virtual reality classroom for children with attention-deficit/hyperactivity disorder: study protocol for a randomized controlled trial. Trials. 2017; 18:41.
  • 4. Hudak J, Blume F, Dresler T, et al. Near-infrared spectroscopy-based frontal lobe neurofeedback integrated in virtual reality modulates brain and behavior in highly impulsive adults. Front Hum Neurosci. 2017; 11:425.
  • 5. Marx AM, Ehlis AC, Furdea A, et al. Near-infrared spectroscopy (NIRS) neurofeedback as a treatment for children with attention deficit hyperactivity disorder (ADHD)-a pilot study. Front Hum Neurosci. 2015; 8:1038.
  • 6. Kober SE, Wood G, Kurzmann J, et al. Near-infrared spectroscopy based neurofeedback training increases specific motor imagery related cortical activation compared to sham feedback. Biol Psychol. 2014; 95:21–30.
  • 7. Mihara M, Hattori N, Hatakenaka M, et al. Near-infrared spectroscopy–mediated neurofeedback enhances efficacy of motor imagery–based training in poststroke victims: a pilot study. Stroke. 2013; 44 (4):1091–8.
  • 8. Okumura Y, Kitaa Y, Omori M, et al. Predictive factors of success in neurofeedback training for children with ADHD. Dev Neurorehabil. 2019;22(1):3-12.
  • 9. Bartholdy S, Musiat P, Campbell IC, et al. The potential of neurofeedback in the treatment of eating disorders: a review of the literature. Eur Eat Disord Rev. 2013; 21 (6): 456–63.
  • 10. Takizawa R, Fukuda M, Kawasaki S, et al. Neuroimaging-aided differential diagnosis of the depressive state. Neuroimage. 2014; 85(1):498-507.
  • 11. Balconi M, Vanutelli ME. Neurofeedback intervention for emotional behavior regulation in schizophrenia: new experimental evidences from optical imaging. NeuroRegulation. 2019; 6(2):71-80.
  • 12. Storchak H, Hudak J, Haeussinger FB, et al. Reducing auditory verbal hallucinations by means of fNIRS neurofeedback–a case study with a paranoid schizophrenic patient. Schizophr Res. 2019; 204:401-3.
  • 13. Kimmig AS, Dresler T, Hudak J, et al. Feasibility of NIRS-based neurofeedback training in social anxiety disorder: behavioral and neural correlates. J Neural Transm (Vienna). 2019;126(9):1175-85.
  • 14. Mayer K, Wyckoff SN, Fallgatter AJ, et al. Neurofeedback as a nonpharmacological treatment for adults with attention-deficit/hyperactivity disorder (ADHD): Study protocol for a randomized controlled trial. Trials. 2015; 16:174.
  • 15. Bahadır A. Travma sonrası stres bozukluğunun tedavisinde EEG-dayalı nörofeedback yönteminin kullanımı. DÜ Sağlık Bil Enst Derg. 2020;10(1):123-30.
  • 16. Imperatori C, Mancini M, Marca GD. Feedback-based treatments for eating disorders and related symptoms: a systematic review of the literature. Nutrients. 2018; 10:1806.
  • 17. Dalton B, Campbell IC, Schmidt U. Neuromodulation and neurofeedback treatments in eating disorders and obesity. Curr Opin Psychiatry. 2017; 30(6):458-73.
  • 18. Thibault RT, Lifshitz M, Raz A. The self-regulating brain and neurofeedback: experimental science and clinical promise. Cortex. 2016; 247-61.
  • 19. Ehlis AC, Schneider S, Dresler T, et al. Application of functional near-infrared spectroscopy in psychiatry. Neuroimage. 2014; 1: 478–88.
  • 20. Leff DR, Orihuela-Espina F, Elwell CE, et al. Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies. Neuroimage. 2011;54(4):2922–36.
  • 21. Ehlis AC, Bähne CG, Jacob CP, et al. Reduced lateral prefrontal activation in adult patients with attention deficit/hyperactivity disorder (ADHD) during a working memory task: a functional near-infrared spectroscopy (fNIRS) study. J Psychiatr Res. 2008; 42(13): 1060– 7.
  • 22. Liu N, Cliffer S, Pradhan AH, et al. Optical-imaging-based neurofeedback to enhance therapeutic intervention in adolescents with autism: methodology and initial data. Neurophotonics. 2017; 4(1):011003.
  • 23. Narita N. Application of NIRS as a non-invasive and supportive tool for autism spectrum disorders. Trans Jpn Soc Med Biol Eng. 2015; 53(Supplement):366-8.
  • 24. Bandelow B, Michaelis S. Epidemiology of anxiety disorders in the 21st century Dialogues. Clin Neurosci. 2015; 17(3):327–35.
  • 25. Havranek M, Volkart F, Bolliger B, et al. The fear of being laughed at as additional diagnostic criterion in social anxiety disorder and avoidant personality disorder. Plos One. 2017; 12(11): e0188024.
  • 26. Morrison AS, Heimberg RG. Social anxiety and social anxiety disorder. Annu Rev Clin Psychol. 2013; 9:249–74.
  • 27. Negoro H, Sawada M, Iida J, et al. (2010). Prefrontal dysfunction in attention-deficit/hyperactivity disorder as measured by near-infrared spectroscopy. Child Psychiatry Hum Dev. 2010; 41(2):193–203.
  • 28. Inoue Y, Sakihara K, Gunji A, et al. Reduced prefrontal hemodynamic response in children with ADHD during the Go/NoGo task: a NIRS study. NeuroReport. 2012;23(2):55–60.
  • 29. Xiao T, Xiao Z, Ke X, et al. Response inhibition impairment in high functioning autism and attention deficit hyperactivity disorder: evidence from near-infrared spectroscopy data. PLoS One. 2012; 7:e46569.
  • 30. Matsuda G, Hiraki K. Sustained decrease in oxygenated hemoglobin during video games in the dorsal prefrontal cortex: a NIRS study of children. Neuroimage. 2006; 29(3):706–11.
  • 31. Weber P, Lütschg J, Fahnenstich H. Cerebral hemodynamic changes in response to an executive function task in children with attention-deficit hyperactivity disorder measured by near-infrared spectroscopy. J Dev Behav Pediatr. 2005; 26(2):105–11.
  • 32. Jourdan-Moser S, Cutini S, Weber P, et al. Right prefrontal brain activation due to Stroop interference is altered in attention-deficit hyperactivity disorder: a functional near-infrared spectroscopy study. Psychiatry Res. 2009;173(3):190–5.
  • 33. Vanderwert RE, Nelson CA. The use of near-infrared spectroscopy in the study of typical and atypical development. Neuroimage. 2014;85(1):264–71.
  • 34. Yasumura A, Inagaki M, Hiraki K. Relationship between neural activity and executive function: an NIRS study. ISRN Neurosci. 2014; 734952.
  • 35. Barth B, Strehl U, Fallgatter AJ, et al. Near-infrared spectroscopy based neurofeedback of prefrontal cortex activity: A proof-of-concept study. Front Hum Neurosci. 2016;10: 633.
  • 36. Val-Laillet D, Aarts E, Weber B, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage: Clinical. 2015; 8:1-31.
  • 37. Nagamitsu S, Yamashita F, Araki Y, et al. Characteristic prefrontal blood volume patterns when imaging body type, high-calorie food, and mother–child attachment in childhood anorexia nervosa: a near infrared spectroscopy study. Brain Dev. 2010; 32 (2): 162–7.
  • 38. Nagamitsu S, Araki Y, Ioji T, et al. Prefrontal brain function in children with anorexia nervosa: a nearinfrared spectroscopy study. Brain Dev. 2011; 33 (1): 35–44.
  • 39. Sutoh C, Nakazato M, Matsuzawa D, et al. Changes in self-regulation-related prefrontal activities in eating disorders: a near infrared spectroscopy study. PLOS One. 2013; 8 (3): e59324.
  • 40. Suda M, Uehara T, Fukuda M, et al. Dieting tendency and eating behavior problems in eating disorder correlate with right frontotemporal and left orbitofrontal cortex: a near-infrared spectroscopy study. J Psychiatr Res. 2010; 44 (8): 547–55.
  • 41. Uehara T, Fukuda M, Suda M, et al. Cerebral blood volume changes in patients with eating disorders during Word fluency: a preliminary study using multi-channel near infrared spectroscopy. Eat Weight Disord. 2007; 12 (4): 183–90.
  • 42. Van Den Eynde F, Suda M, Broadbent H, et al. Structural magnetic resonance imaging in eating disorders: a systematic review of voxel-based morphometry studies. Eur Eat Disord Rev. 2012; 20(2): 94–105.
  • 43. García-García I, Narberhaus A, Marqués-Iturria I, et al. Neural responses to visual food cues: insights from functional magnetic resonance imaging. Eur Eat Disord Rev. 2013; 21 (2): 89–98.
  • 44. Li K, Jiang Y, Gong Y, et al. Functional near-infrared spectroscopy-informed neurofeedback: regionalspecific modulation of lateral orbitofrontal activation and cognitive flexibility. Neurophoton. 2019; 6(2):025011.
  • 45. Doi H, Nishitani S, Shinohara K. NIRS as a tool for assaying emotional function in the prefrontal cortex. Front Hum Neurosci. 2013; 7:770.
  • 46. Watanabe Y, Urakami T, Hongo S, et al. Frontal lobe function and social adjustment in patients with schizophrenia: near-infrared spectroscopy. Hum Psychopharmacol. 2015; 30(1): 28–41.
  • 47. Allen P, Modinos G, Hubl D, et al. Neuroimaging auditory hallucinations in schizophrenia: from neuroanatomy to neurochemistry and beyond. Schizophr Bull. 2012; 38(4): 695–703.
  • 48. Diederen KMJ, Neggers SFW, Daalman K, et al. Deactivation of the parahippocampal gyrus preceding auditory hallucinations in schizophrenia. Am J Psychiatry. 2010; 167(4): 427–35.
  • 49. McCarthy-Jones S. Hearing voices: The histories, causes and meanings of auditory verbal hallucinations. New York, NY: Cambridge University Press. 2012a.
  • 50. McCarthy-Jones S. Taking back the brain: Could neurofeedback training be effective for relieving distressing auditory verbal hallucinations in patients with schizophrenia? Schizophr Bull. 2012b; 38(4):678–82.
  • 51. Woolfenden S, Sarkozy V, Ridley G, et al. A systematic review of the diagnostic stability of Autism Spectrum Disorder. Res Autism Spectr Disord. 2012; 6(1):345-54.
  • 52. Worley JA, Matson JL. Comparing symptoms of autism spectrum disorders using the current DSM-IV-TR diagnostic criteria and the proposed DSM-V diagnostic criteria. Res Autism Spectr Disord. 2012; 6(2):965- 70.
  • 53. Liu T, Liu X, Li Y, et al. Assessing autism at its social and developmental roots: A review of Autism Spectrum Disorder studies using functional near-infrared spectroscopy. Neuroimage. 2019; 185:955-67.
  • 54. Zhang F, Roeyers H. Exploring brain functions in autism spectrum disorder: A systematic review on functional near-infrared spectroscopy (fNIRS) studies. Int J Psychophysiol. 2019; 137:41-53.
KONURALP TIP DERGİSİ-Cover
  • ISSN: 1309-3878
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2009
  • Yayıncı: Düzce Üniversitesi Tıp Fakültesi Aile Hekimliği AD adına Yrd.Doç.Dr.Cemil Işık Sönmez