Sugi Diri ve Öz Odununda Bor, Flor ve Bakır Dağılımı: Elementler Arasındaki Etkileşimler

Çalışmanın amacı: Bu çalışmada, tek ve ikili işlemlerle bor (B), florür (F) ve bakır (Cu) elementlerinin sugi ağacının diri ve öz odunundaki dağılımını ve her bir elementin ikili işlemdeki element dağılımı üzerindeki etkisi değerlendirilmiştir. Materyal ve yöntem: Sugi diri ve öz odun örneklerinde açılan delikler, tek işlemlerde 6 ml % 2 ve % 5 olmak üzere iki grup olarak DOT (di-sodyum oktoborat tetrahidrat), NaF (sodyum florür) ya da CuS04 (bakır sülfat) çözeltileri ile doldurulmuştur. Dual işlemlerde ise her bir bileşikten 3’er ml alınarak ikili çözeltiler hazırlanarak deliklere doldurulurmuştur. 7, 30, 60 ve 90 günlük şartlandırma periyotlarından sonra, örneklerden üç analiz bölgesinden örnek alınmış ve bu örneklerdeki element dağılımı belirlenmiştir. Temel sonuçlar: Sonuçlar, elementlerin çift işlemlere dahil edilmesinin genellikle element dağılımı üzerinde olumsuz bir etkisi olmadığını ve çoğu durumda test bölgelerinde daha yüksek element seviyeleri elde etmelerinde yardımcı olduklarını göstermiştir. Bununla birlikte, ikili işlemde, Cu varlığı, iki element arasında ters etkileşime işaret eden F içeriğini olumsuz yönde etkilediği belirlenmiştir. Araştırma vurguları: Cu elementinin F elementinin difüzyonu üzerindeki olumsuz etkisi haricinde, B, F ve Cu elementlerinin uygulamalarda birbirleri üzerinde olumsuz bir etkisi olmamıştır. Çoğu durumda, element çiftlerinin varlığı, her birinin odun içerisindeki difüzyonunu iyileştirmiştir.

Boron, Fluoride and Copper Distribution in Treated Sugi Sapwood and Heartwood: Interactions Between the Elements

Aim of study: This study evaluated the distribution of boron (B), fluoride (F) and copper (Cu) elements in sugi wood by single and double treatments and the effect of each element on the elemental distribution in double treatments. Material and methods: The holes in sugi sap- and heartwood specimens were filled with 6 ml of either DOT, NaF or CuSO4 solutions (2 and 5%) in single treatments. Some specimens were similarly treated with DOT + NaF, DOT + CuSO4 and NaF + CuSO4 solutions as double treatments. After conditioning periods of 7, 30, 60 and 90 days, the specimens were cut to three equal assay zones and element distribution was determined in these assay zones. Main results: Incorporation of the elements in double treatments generally had no adverse effects on element distribution and in most cases they helped each other to obtain higher element levels in the assay zones. However, in double treatments, presence of Cu negatively affected F content. Research highlights: Except for the adverse effects of Cu on F element diffusion, there was no negative effect of B, F and Cu elements on each other in the treatments. In most cases, incorporation of the elements improved the diffusion of each one.

___

  • American Wood Protection Association (AWPA). (2006). Standard A2. Analysis of waterborne preservatives and fire-retardant formulations. Method 7. Determination of fluoride in wood and solutions. In: AWPA Book of Standards. AWPA, Selma, AL., 236-237.
  • American Wood Protection Association (AWPA). (2012). Standard wet ashing procedures for preparing wood for chemical analyses. Standard A7-12. In: Book of Standards. AWPA, Birmingham, Alabama, 224.
  • Cooper, P. A. (1991). Cation exchange adsorption of copper on wood. Wood Protection, 1(1), 9-14.
  • Freeman, M. H. (2013). The concept of copper and boron synergy: why copper naphthenate and borates are a couple made in heaven. In: Proceedings of The 44th Annual Meeting of IRG-WP, Stockholm, Sweden, 16-20 June 2013, IRG-WP 13-30622, 19
  • Freitag, C. & Morrell, J. J. (2005). Development of threshold values for boron and fluoride in non-soil contact applications. Forest Products Journal, 55(4), 97–101.
  • Kartal, S. N., Terzi, E. & Yoshimura, T. (in press) Performance of fluoride and boron compounds against drywood and subterranean termites and decay and mold fungi. Journal of Forestry Research.
  • Lebow, S. & Anthony, R. W. (2012). Guide for use of wood preservatives in historic structures.
  • General Technical Report FPL-GTR-217, Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 59.
  • Lebow, S., Woodward, B., Abbot, B. & West, M. (2014). Synergy and diffusion with a borax-copper hydroxide groundline preservative: 20. year update. In Proceedings of AWPA (American Wood Protection Association) 110th Annual Meeting, May 4-6, 2014 Newport Beach, California, USA, 88-94.
  • Morrell, J. J., Freitag, C. M. & Chen, H. (2005). Sequential treatments with fluoride and copper: Effects of solution concentration and dipping time on treatment. Forest Products Journal, 55(7/8), 57-62.
  • Pavia, K. J. (2006). A review of double-diffusion wood preservation suit- able for Alaska. Gen. Tech. Rep. PNW-GTR-676. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 23
  • Tascioglu, C., Umemura, K., Kusuma, S. S. & Yoshimura, T. (2017). Potential utilization of sodium fluoride (NaF) as a biocide in particleboard production. Journal of Wood Science, 63(6), 652-657.
  • Terzi, E., Kartal, S. N., Gerardin, P., Ibanez, C. M. & Yoshimura, T. (2017). Biological performance of particleboard incorporated with boron minerals. Journal of Forest Research, 28(1), 195-203.