Surface Characterization of Heat-Treated Wood Filled Styrene Maleic Anhydride (SMA) Composites

The main objective of the present study was to evaluate the effect of thermal treatment on the surface properties of heat treated wood flour filled Styrene Maleic Anhydride (SMA) composites. SMA is an engineering polymer in the automotive for interior and exterior construction applications by injection molding and thermoforming. The heat-treatment of the pine wood was performed at 212 ºC for 8 h. The SMA polymer was filled with untreated or thermally treated wood flour from 0 to 50 wt%. After the extrusion process by twin screw extruder, the specimens were produced by injection molding machine. As a results, the surface roughness values of the filled SMA composites increased with increasing with heat treated loading filler. Similarly, the wettability of heat treated and untreated wood flour SMA composites increased with increasing content of the wood flour.

Isıl İşlemli Odun Dolgu Stiren Maleik Anhidrit (SMA) Kompozitlerinin Yüzey Karakterizasyonu

Çalışmanın ana hedefi, ısıl işlemli odun dolgulu Stiren Maleik Anhidrit (SMA) kompozitlerinin yüzey özellikleri üzerine ısıl muamelenin etkisinin değerlendirmesidir. SMA, enjeksiyon kalıplama ve ısı ile şekillendirme ile iç mekan ve iç mekan uygulamaları için otomobil sektöründeki mühendislik polimeridir. Çam odununa ısıl işlem 212 ºC’de 8 saat süre ile uygulanmıştır.. SMA polimerlerine ağırlıkça %0’dan %50’ye kadar ısıl işlemli ve ısıl işlemsiz odun unu katılmıştır. Çift vidalı ekstrüzyon kalıplama işleminden sonra, örnekler enjeksiyon kalıplama makinesinde üretilmiştir. Sonuçlara göre, ısıl işlemli dolgu oranı arttıkça SMA kompozitlerinin yüzey pürüzlülüğü değeri artmaktadır. Benzer olarak, odun dolgu oranı arttıkça, ısıl işlemli odun dolgulu SMA kompozitlerinin ıslanabilirliği artmaktadır.

___

Ayrilmis, N., Jarusombuti, S., Fueangvivat, V., Bauchongkol, P. 2011. Polym. Degrad. Stab., 96, 818.

Bhuiyan, TR., Hirai, N., Sobue N. 2000. Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. J. Wood Sci., 46: 431–436.

Bledzki, AK., Sperber, VE., Faruk, O. 2002. Rapra Review Reports, 13: 8.

Budakci, M., Ilce AC., Korkut, DS., Gürleyen, T. 2011. Evaluating the surface roughness of heat treated wood cut with different circular saws. Bioresurces, 6(4): 4247-4258.

Caulfield, DF., Stark, N., Feng, D., Sanadi, AR. 1998. Dynamic and mechanical properties of the agro-fiber based composites. In: Progress in wood fibre-plastic composites: emergences of a new industry; June 01; Mississauga, Ontario. Mississauga, Ontario, CN: Materials and Manufacturing Ontario: 8p.

Clemons, CM., Ibach, RE. 2004. The effects of processing method and moisture history on the laboratory fungal resistance of wood-HDPE composites. Forest Prod. J., 54; 50-57.

English, B., Youngquist, AM., Krzysik, AM. 1994. Lignocellulosic composites. Prepared for publication in Cellulosic Polymers, Blends and Composites; U.S. Department of Agriculture, Forest Products Laboratory.

Esteves, B., Pereira, HM. 2009. Wood modification by heat treatment: A review, Bioresources, 4(1): 370-404.

Hakkou, M., Pe´trissans M, Ge´rardin P, Zoulalian A. 2006. Investigations of the reasons for fungal durability of heattreated beech wood. Polym. Degrad. Stabil., 91: 393–397.

Hill, CAS. 2006. Wood Modification: Chemical, Thermal and Other Processes, John Wiley & Sons Ltd. West Susses, England.

Hillis, WE. 1984. High temperature and chemical effects on wood stability. Part 1: general considerations. Wood Sci. Technol., 18: 281–293.

Hwang, GS., Lee, MC., Peng, WT. 1994. Properties of Plastic- Wood composite particleboard. Bull. Taiwan Forest Res. Inst. New Ser., 9(4): 407-412.

ISO 4288, 1997. Geometrical product specifications (GPS) - Surface texture: Profile method-Rules and procedures for the assessment of surface texture.

Kandem, D., Pizzi, A., Jermannaud, A. 2002. Durability of heattreated wood. Holz Roh-Werkst, 60: 1-6.

Koto, T., Tiisala, S. 2004. Uovi+Puu, puukuitulujitteiset muovikomposiitit. (Plastic +Wood, wood fibre reinforced plastic composite) Jyvaskyla, Gummerus Kirjapaino Oy. 100p. ISBN. 951-827-025-2 (in Finnish).

Lomelí-Ramírez, MG., Ochoa-Ruiz, HG., Fuentes-Talavera, FJ., García-Enriquez, S., Cerpa-Gallegos, MA., Silva- Guzmán, JA. 2009. Evaluation of accelerated decay of wood plastic composites by Xylophagus fungi. Int. Biodet. Biodegrad., 63: 1030-1035.

Lu, J.Z., Wu, Q., McNabb, Jr. HHS. 2000. Chemical coupling in wood fiber and polymer composites: A review of coupling agent and treatments. Wood Fiber Sci., 32(1): 88-104.

Mali, J., Rautiainen, L. 2005. Puumuvikomposiitit: teknologia ja markkina-analyysi. (Wood fibre plastic composites: technology and market anlaysis).19p. VTT Technical Research Center of Finland (in Finnish).

Morrell, J., Stark, NM., Pendleton, DE., Mcdonald, AG. 2006. Durability of wood plastic composites. Wood Des. Foc., 16: 7-10.

Northcott, P.L. Hancock, WV., Colbeck, HGM. 1962. Water relations in phenolic (plywood) bonds. Forest Prod. J., 12(10): 478-486.

Petrissams, M., Gerardin, P., Elbakali, D., Serraj, M. 2003. Wettability of heat-treated wood. Holzforschung, 57: 301-307.

Pfriem, A., Zauer, M., Wagenfu, A. 2010. Alteration of the unsteady sorption behavior of maple (Acer pseudoplatanus L.) and spruce (Picea abies L.) Karst. due to thermal modification. Holzforschung, 64(2): 235–241.

Riedel, U., Nickel, J. 2003. Seventh International Conference on Wood fiber-Plastic Composites, May 19-20, Madison, Wisconsin, USA.

Rowell, RM. 2007. Chemical modification of wood. In: Handbook of Engineering Biopolymers Homopolymers, Blends and Composites. Eds. Fakirov, S., Bhattacharyya, D. Carl Hanser Verlag, Munich. pp. 673-691

Rowell, RM., Ibach, ER., McSweeny, J., Nilsson, T. 2009. Understanding decay resistance, dimensional stability and strength changes in heat treated and acetylated wood. Wood Mater. Sci. Eng., 1: 14–22.

Sperber, VE. 2002. Fourth International Wood and Natural Fiber Composites Symposium, April 10-11, Kassel, Germany.

Stanzl-Tschegg, S., Beikircher, W., Loidl, D. 2009. Comparison of mechanical properties of thermally modified wood at growth ring and cell wall level by means of instrumented indentation tests. Holzforschung, 63(4): 443–448.

Stark, NM., Rowlands, RE. 2003. Effect of wood fiber characteristics on mechanical properties of wood-polypropylene composites. Wood Fiber Sci., 35(2): 167-174.

Trougton, GE., Chow, SZ. 1971. Migration of fatty acids to white spruce veneer surface during drying: Relevance to theories of inactivation. Wood Sci., 3: 129-133;

USDA Wood Handbook. 1999. Wood as an Engineering Material - Madison, WI, United States Department of Agriculture Forest Service, Forest Products Laboratory, 463p;

Windeisen E., Strobel, C., Wegener, G. 2007.Chemical changes during the production of thermos-treated beech wood. Wood Sci. Technol., 41: 523-536.

Wolcott, MP. 2003. Formulation and process development of flatpressed wood-polyethylene composites. Forest Prod. J., (9): 25- 32.

Wood Handbook, 2010. Forest Products Laboratory, United States Department of Agriculture Forest Service, Madison, Wisconsin.