İçme Suyu Kaynaklarının Klor ve Klor Dioksit ile Dezenfeksiyonu Sonucu Meydana Gelen Dezenfeksiyon Yan Ürünleri Oluşumunun Araştırılması: İstanbul Örneği

Bu çalışmada içme suyu kaynaklarının klor (Cl2) ve klor dioksit (ClO2) ile oksidasyonu sonucu meydana gelen sırası ile trihalometan (THM), klorit (ClO2 -) ve klorat (ClO3 -) gibi dezenfeksiyon yan ürünleri (DYÜ) araştırılmıştır. Bu çalışmada analiz edilen su örnekleri İstanbul’un içme suyu kaynakları olan Terkos Gölü (TRG), Büyükçekmece Gölü (BÇG) ve Ömerli Baraj (ÖLB) sularından toplanmıştır. Su örnekleri Cl2 ve ClO2 ile oksitlenerek verilen reaksiyon süreleri sonunda meydana gelen THM oluşumları tespit edilmiştir. TRG, BÇG ve ÖLB su örneklerinde doğal organik madde (DOM) içeriği ise toplam organik karbon (TOK), 254 nm’deki ultraviyole absorban (UV254) ve spesifik ultraviyole absorban (SUVA) parametrelerinin ölçümleri ile ortaya konulmuştur. Klorlanan su numunelerinde 24 saatlik reaksiyon süresi sonunda ve oda sıcaklığında (25 oC) ölçülen en yüksek THM konsantrasyonu (235,65 μg/l) TRG ham sularında gözlemlenmiştir. Cl2 ile oksitlenen sulardaki THM miktarlarında artış meydana gelirken ClO2 ile oksitlenen su numunelerinde ise azalma trendi gözlenmiştir. Diğer yandan bu çalışmada su örneklerinin ClO2 ile oksitlenmesi sonucu meydana gelen ClO2 - ve ClO3 - gibi inorganik yan ürünlerin oluşumları değerlendirilmiştir. ClO2 - ve ClO3 - oluşum yüzdeleri sırası ile TRG’de %68,51-%13,21, BÇG’de %61,05-%12,28 ve ÖLB’de ise %69,87-%15,67 olarak tespit edilmiştir.

Investigation of Disinfection By-Products Formation in Disinfection of Drinking Water Sources with Chlorine and Chlorine Dioxide: Istanbul Case Study

In this study, formation of disinfection byproducts (DBPs), namely, trihalomethane (THM) during chlorine (Cl2) and chlorine dioxide (ClO2) oxidizing was investigated with reference to key controlling parameters. Terkos Lake Water (TRG), Büyükçekmece Lake Water (BÇG) and Ömerli Dam (OLB) were used as drinking water source in present study. Water samples were oxidized with Cl2 and ClO2 doses at the end of given reaction times to observe the formation of THMs in water sources. The structures of natural organic matter (NOM) in TRG, BÇG and ÖLB samples were revealed to the organic parameters, namely, total organic carbon (TOC), ultraviole absorbance at 254 nm wavelength (UV254) and specific ultrviole absorbance (SUVA). Among to the chlorinated drinking water sources, the highest THM concentration was observed as (235,65 μg/l) in TRG samples with dose of Cl2 (10 mg/l) at the end of reaction time of 24 h. Altough THM amounts increased in waters oxidized with Cl2, the trend of decreasing THM amounts with oxidized ClO2 was observed. On the other hand, formation of inorganic DBPs such as chlorate (ClO3 -) and chlorite (ClO2 -) was evaluated during ClO2 oxidizing. ClO2 - and ClO3 - levels were determined as 68,51%-13,21% for TRG, 61,05% -12,28% for BÇG and 69,87% -15,67% for OLB.

___

  • Agusa, E., Nikolay A.N., David, V. 2009. Disinfection by-products and their potential impact on the quality of water produced by desalination system. Desalination, 237: 214-237. DOI: 10.1016/J.DESAL.2007.11.059.
  • Aieta, EM., Berg, JD. 1986. A Review of Chlorine Dioxide in Drinking Water Treatment. J. Am. Water Works Assoc., 78(6): 62-72. Proje23 DOI: 10.1002/j.1551-8833.1986.tb05766.x
  • Al-Otoum, F., Al-Ghouti, M.A., Ahmed, TA., Abu-Dieyeh, M., Ali. M. 2016. Disinfection by-products of chlorine dioxide (chlorite, chlorate, and trihalomethanes): occurrence in drinking water in Qatar. Chemosphere, 164: 649-656. DOI: http://dx.doi.org/10.1016/j.chemosphere.2016.09.008
  • Ammar, T.A., Abid, K.Y., El-Bindary, A.A., El-Sonbati, A.Z. 2014. ClO2 bulk decay prediction in desalinated drinking water. Desalination, 352: 45-51. DOI:https://doi.org/10.1016/j.desal.2014.08.010
  • Anonim, 2005. 17 Şubat 2005 tarihli resmi gazetede yayınlanan İnsani Tüketim Amaçlı Sular Hakkında Yönetmelik. Ankara, htpp/ mevzuat.gov.tr/.
  • APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 22th ed. American Public Health Association, Washington DC. http://www.apha.org/
  • Avşar, E., Karadağ, SG,, Toröz, I., Hanedar, A, 2017. İstanbul Ömerli ham suyunda dezenfeksiyon amaçlı klor dioksit kullanımının dezenfeksiyon yan ürün (DYÜ) oluşumuna etkisinin araştırılmaJ.Eng. Sci., 23(3): 297-302.DOI: 10.5505/pajes.2016.27132
  • Avşar, E., Toröz İ., Hanedar A., Yılmaz M., 2014. Chemical characterization of natural organic matter and determination of disinfection by-product formation potentials in surface waters of Istanbul (Omerlı and Buyukcekmece water dam), Turkey. Fresenius Environ. Bull., 23: 494-501.
  • Avşar, E., Toröz İ., Hanedar A., 2015. Physical characterisation of natural organic matter and determination of disinfection by-product formation potentials in Istanbul surface waters. Fresenius Environ. Bull., 24: 2763-2770.
  • Benjamin, M.M., Li, C.W. and Korshin, G.V. 2000. Use of UV Spectroscopy to characterize the reaction between NOM and free chlorine. Environ. Sci. Technol. 34(12): 2570-2575. DOI: https://doi.org/10.1021/es990899o.
  • Chang, H.H., Tung, H.H., Chao, C.C., Wang, G.S., 2010. Occurrence of haloacetic acids(HAAs) and trihalomethanes (THMs) in drinking water of Taiwan. Environ Monit. Assess. 162, 237e250. DOI: https://doi.org/10.1007/s10661-009-0792-1
  • Chowdhury, S., Alhooshaniİ K., Karanfil, T. 2014. Disinfection byproducts in swimming pool: occurrences, implications and future needs. Water Res, 53: 68-109. DOI: http://dx.doi.org/10.1016/j.watres.2014.01.017.
  • Chu, W.-H., Gao, N.-Y., Deng, Y., Templeton, M.R., Yin, D.-Q. 2011. Formation of nitrogenous disinfection by-products from pre-chloramination. Chemosphere, 85: 1187-1191. DOI: 10.1016/j.chemosphere.2011.07.011.
  • Dickenson, E R V., Summers, R.S., Crou´e, J-P., Gallard, H. 2008. Haloacetic acid and trihalomethane formation from the chlorination and bromination of aliphatic ?-Dicarbonyl acidmodel compounds. Environ. Sci. Technol., 42(9): 3226–3233. DOI: 10.1021/es0711866.
  • Edzwald, J. K., Becker, W. C., Wattier, K. L. 1985. Surrogate parameters for monitoring organic matter and THM precursors. J. Am. water Work Assoc. 77(4):122–132. DOI: https://doi.org/10.1002/j.1551-8833.1985.tb05521.x
  • Elshorbagy, WE., Abu-Qadais, H., Elsheamy, MK. 2000. Simulation of THM species in water distribution systems. Water Res 34:3431–9. DOI: https://doi.org/10.1016/S0043-1354(00)00231-1
  • Gan, W., Huang, H., Yang, X., Peng, Z., Chen, G. 2016. Emerging investigators series: disinfection by-products in mixed chlorine dioxide and chlorine water treatment. Envıron. Scı: Water Res. Technol., 2: 838-847. DOI: 10.1039/c6ew00061d.
  • Geter, D.R., George, M.H., Moore, T.M., Kilburn, S., Huggins-Clark, G., DeAngelo, A.B. 2004. Vehicle and mode of administration effects on the induction of aberrant crypt foci in the colons of male F344/N rats exposed to bromodichloromethane. J. Toxicol. Environ. Health A., 67: 23-29. DOI: 10.1080/15287390490253642.
  • Gill, TI., Smith, GJ., Wissler, RW., Kunz, HW. 1989. The rat as experimental animal, Science, 254: 269-276. DOI: 10.1126/science.2665079.
  • Gordon, G., Slootmaekers, B., Tachiyashiki, S., Delmer, III WW. 1990. Minimizing chlorite Ion and chlorate ion in water treated with whlorine dioxide. J. Am. Water.Works. Assoc., 82: 160-165. DOI: https://doi.org/10.1002/j.1551-8833.1990.tb06947.x
  • Guary, C., Rodriquez, M. and Serodes, J. 2005. Using ozonation and chloramination to reduce the formation of trihalomethanes and haloacetic acids in drinking water, Desalination, 176: 229-240. DOI: 10.16/j.desl.2004.10.015.d
  • Han, J., Zhang, X. 2018. Evaluating the comparative toxicity of DBP mixtures from different disinfection scenarios: a new approach by combining freeze-drying or rotoevaporation with a marine polychaete bioassay. Environ. Sci. Technol., 52: 10552-10561. DOI:10.1021/acs.est.8b02054.
  • Hong, H., Yan, X., Song, X., Qin, Y., Sun, H., Lin, H., Chen, J., Liang, Y. 2017. Bromine incorporation into five DBP classes upon chlorination of water with extremely low SUVA values. Sci. Total Environ. 590 (591): 720-728. DOI: https://doi.org/10.1016/ j.scitotenv.2017.03.032.
  • Hsu, M., Wu, MY., Huang, T., Liao, CH. 2016. Efficacy of chlorine dioxide disinfection to non-fermentative gram-negative bacilli and non-tuberculous mycobacteria in a hospital water system. J.Hosp. Infect, 93(1): 22-28, 2016. DOI: 10.1016/j.jhin.2016.01.005.
  • Linder, K., Lew, J., Carter, B., Brauer, R. 2006. Avoiding chlorite:chlorine and ClO2 together to form fewer DBPs. Opflow, 32 (8): 24–26. DOI: https://doi.org/10.1002/j.1551-8701.2006.tb01886.x.
  • Manasfi, T., De M_eo, M., Coulomb, B., Di Giorgio, C., Boudenne, J.L. 2016. Identification of disinfection by-products in freshwater and seawater swimming pools and evaluation of genotoxicity. Environ. Int. 88: 94-102. DOI: https://doi.org/10.1016/ j.envint.2015.12.028.
  • Matilainen, A., Ludquvist, N., Korhonen, S. and Tuhkanen, T. 2002. Removal of NOM different stages of the water treatment process, Environ. Int., 28: 457-465. DOI: 10.1016/s0160-4120(02)00071-5.
  • Özdemir, K., Uyak,V., Toröz, İ. 2014. Relationship Among Chlorine Dose, Reaction Time and Bromide Ions on Trihalomethane Formation in Drinking Water Sources in Istanbul, Turkey. Asian. J. Chem., 26 (20): 6935-6939. DOI: http://dx.doi.org/10.14233/ajchem.2014.17463.
  • Özdemir, K., Uyak,V., Toröz, İ. 2015. Experimental Investigation of trihalomethane formation and its modeling in drinking waters. Asian. J. Chem., 27 (3): 984-990. DOI: http://dx.doi.org/10.14233/ajchem.2015.17893.
  • Özdemir, K. 2016. The use of carbon nanomaterials for removing natural organic matter in drinking water sources by a combined coagulation process. Nanomater Nanotechnol.,6: 1-12. DOI: 10.1177/1847980416663680.
  • Pereira, T., Pereira, AO., Costa, JT., Silva, MBO., Schuchard, W., Osaki, SC., Castro, EA., Paulino, RC., Soccol, VT. 2008. Comparing the efficacy of chlorine, ClO2, and ozone in the inactivation of cryptosporidium parvum in water from parana state, southern Brazil. Appl. Biochem. Biotechnol., 151: 464-473. DOI: 10.1007/s12010-008-8214.
  • Plewa, M.J., Wagner, ED., Richardson, SD., Thruston Jr, AD., Woo, YT., McKague, AB. 2004. Chemical and biological characterization of newly discovered iodoacid drinking water disinfection byproducts. Environ. Sci. Technol., 38: 4713-4722. DOI: 10.1021/es049971v.
  • Ramavandi, B., Farjadfard, S., Ardjmand, M., Dobaradaran, S. 2015. Effect of water quality and operational parameters on trihalomethanes formation potential in Dez River water, Iran. Water Resour. Ind. 11: 1-12. DOI: https://doi.org/10.1016/j.wri. 2015.03.002.
  • Sadiq, R., Rodriguez, M J. 2004. Disinfectionby-products (DBPs) in drinking water and predictive models for their occurrence: a review. Sci.Total. Environ., 321 (1-3): 21–46. DOI: 10.1016/j.scitotenv.2003.05.001.
  • Satpathy, K.K., Subramanian, S., Padhi, R.K. 2019. Effect of biofouling on the cooling water quality of a nuclear power plant. Chemosphere, 218: 540-50. DOI: https://doi.org/10.1016/j.chemosphere.2018.11.100.
  • Sorlini, S., Gialdini, F., Biasibetti, M., Collivignarelli, C. 2014. Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation. Water Res. 54: 44-52. DOI: https://doi.org/10.1016/j.watres.2014.01.038.
  • Stanford, B.D., Pisarenko, A.N., Snyder, S.A., Gordon, G. 2011. Perchlorate, bromate, and chlorate in hypochlorite solutions: guidelines for utilities. J. Am. water Work Assoc. 103: 1-13. DOI: https://doi.org/10.1002/j.1551-8833.2011.tb11474.x.
  • USEPA (US Environmental Protection Agency), 1998. National primary drinking water regulations: disinfectants and disinfection byproducts notice of data availability. Fed. Regist. 63 (61): 15673-15692. http://www.epa.gov/
  • USEPA, 2006. National Primary Drinking Water Regulations: Stage 2 Disinfectants and Disinfection Byproducts Rule (final rule). http://www.epa.gov/.
  • Uyak, V., Toröz, İ. 2005. Enhanced coagulation of disinfection by-products precursors in a main water supply of Istanbul. Environ. Technol., 26: 261–266. DOI: https://doi.org/10.1080/09593332608618567.
  • Uyak, V., Özdemir, K., Toröz, İ. 2007. Seasonal variations of disinfection by-productprecursors profile and their removal through surface water treatment plants. Sci. Total. Environ.390: 417-424. DOI: 10.1016/j.scitotenv.2007.09.046.
  • Uyak, V., Ozdemir, K., Toroz, İ. 2008. Seasonal variations of disinfection by-product precursors profile and their removal through surface water treatment plants. Sci.Total. Environ, 390: 417-424. DOI: 10.1016/j.scitotenv.2007.02.041.
  • Uyak, V., Soylu, S., Topal, T., Karapinar, N., Özdemir, K., Özaydin, S., Avsar, E. 2014. Spatial and Seasonal Variations of Disinfection Byproducts (DBPs) in Drinking Water Distribution Systems of Istanbul City, Turkey. Environ. Forensics. 15: 190-205. DOI: 10.1080/15275922.2014.890145.
  • Wang, J., Hao, Z., Shi, F., Yin, Y., Cao, D., Yao, Z., Liu, J. 2018. Characterization of brominated disinfection byproducts formed during the chlorination of aquaculture seawater. Environ. Sci. Technol, 52: 5662-5670. DOI: 10.1021/acs.est.7b05331.
  • WHO (World Health Organization), 2011. Guidelines for drinking-water quality. In: Recommendations fourth ed. Genova. http://www.inchem.org/.
  • Yang, Z., Sun, Y.-X., Ye, T., Shi, N., Tang, F., Hu, H.Y., 2017. Characterization of trihalomethane, haloacetic acid, and haloacetonitrile precursors in a seawater reverse osmosis system. Sci. Total. Environ. 576: 391-397. DOI: https://doi.org/10. 1016/j.scitotenv.2016.10.139.
  • Yoon, Y., Joseph, L., Flora, J.R.V., Saleh, H., Badawy, M., Park, Y.G. 2012. Removal of natural organic matter from potential drinking water sources by combined coagulation and adsorption using carbon nanomaterials. Sep. Purif. Technol., 95: 64-72. DOI: http://dx.doi.org/10.1016/j.seppur.2012.04.033.
  • Yu, H.W., Oh, S.G., Kim, I.S., Pepper, I., Snyder, S., Jang, A. 2015. Formation and speciation of haloacetic acids in seawater desalination using chlorine dioxide as disinfectant. J. Ind. Eng. Chem. 26: 193-201. DOI: https://doi.org/10.1016/j.jiec.2014. 10.046.
  • Zhang, H., Dong, H., Adams, C., Qiang, Z., Luan, G., Wang, L. 2015. Formation and speciation of disinfection byproducts during chlor(am)ination of aquarium seawater. J. Environ. Sci. 33: 116-124. DOI: https://doi.org/10.1016/J.JES.2014.11.016.
Karaelmas Fen ve Mühendislik Dergisi-Cover
  • ISSN: 2146-4987
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2011
  • Yayıncı: ZONGULDAK BÜLENT ECEVİT ÜNİVERSİTESİ