İçme Sularından Pentaklorofenol (PCP) Giderimi İçin En İyi Arıtma Alternatiflerinin Çok Ölçütlü Karar Verme Metotları (MCDM) Kullanılarak Belirlenmesi

Pentaklorofenol (PCP) toksik özelliklerinden dolayı öncelikli mikrokirletici olarak sınıflandırılmaktadır. PCP biyosit olarak yaygın kullanım alanlarına sahiptir. PCP’ler tehlikeli atık bertaraf sahalarından ve tarımsal alanlardan (yağmursuları ve rüzgar etkisiyle sürüklenmeyle) içme suyu kaynaklarına taşınmaktadır. Özellikle içme suları ve gıdalar üzerindeki PCP kalıntılarının insan vücuduna alınması insan sağlığı üzerinde önemli bir risk oluşturmaktadır. Bu çalışmada, PCP’nin içme sularından uzaklaştırılmasında kullanılabilecek en iyi arıtma alternatifi çok ölçütlü karar verme metotlarından (MCDM) yararlanılarak belirlenmiştir. En iyi arıtma alternatifinin belirlenmesi sürecinde kriter ağırlıklandırma (KAM), ağırlıklandırılmış toplama (ATM) ve basit sıralama (BSM) metotlarının bir kombinasyonundan oluşan bir analiz modeli kullanılmıştır. Bu kapsamda tanımlanan 18 değerlendirme kriterine göre literatürdeki benzer çalışma verilerinden ve uzman görüşlerinden de yararlanılarak kapsamlı ve sistematik bir değerlendirme yapılmıştır. Sonuçta membran filtrasyon proseslerinin (nanofiltrasyon (NF) ve ters ozmos (RO)) yüksek giderim performanslarına sahip olması, kolay kurulum, işletim ve bakım kolaylığı, kimyasal gereksiniminin az olması, yaygın kullanıma sahip olması ve oturmuş bir teknoloji olması, arıtılmış su kalitesinin yüksek olması, yan ürün ya da daha toksik metabolitlerin oluşmaması gibi avantajlara sahip olması nedeniyle en iyi arıtma alternatifi olarak belirlenmiştir.

Determination of the Best Treatment Alternatives for Pentachlorophenol (PCP) Removal from Drinking Water Using Multi-Criteria Decision Making Methods (MCDM)

Pentachlorophenol (PCP) is classified as a priority substance (micropollutant) due to its toxic properties. PCP has a widespread usage as a biocide. PCPs are transported from hazardous waste disposal sites and agricultural areas (via rainfalls and drifting wind) to drinking water sources. In particular, the intake of PCP residues on drinking water and foodstuffs poses a significant risk to human health. In this study, the best treatment alternative for the removal of PCP from drinking water was determined using the multicriteria decision making methods (MCDM). An analysis model consisting of a combination of criteria weighting method (CWM), weighted sum method (WSM) and simple ranking method (SRM) were used to determine the best treatment alternative. In this context, a comprehensive and systematic evaluation was conducted based on the described 18 evaluation criteria by utilizing similar studies in the literature and expert recommendations. Ultimately, the membrane filtration processes (NF and RO) were determined as the best treatment alternative because of high removal performance, ease of installation, ease of operation and maintenance, low chemical requirements, widespread usage and robust technology, high quality of treated water, absence of more toxic metabolites or by-products formation etc.

___

  • Abhilash, PC., Singh N. 2009. Pesticide use and application: An Indian scenario. J. Hazard. Mater., 165:1-12.
  • Agency of Natural Resources (ANR) 2015. Pentachlorophenol Report, Response to PSB Docket 8310, October 2015, Final Draft for Public Comment.
  • Aruldoss, M., Lakshmi, M., Venkatesan, VP. 2013. Survey on Multi Criteria Decision Making Methods and Its Applications. Am. J. Inf. Syst., 1:31-43.
  • Asgari, G., Seidmohammadi, A., Chavoshani, A. 2014. Pentachlorophenol removal from aqueous solutions by microwave/persulfate and microwave/H2O2: A comparative kinetic study. J. Environ. Health Sci. Eng., 12:87-94.
  • Bo, L., Quan, X., Wang, X., Chen, S. 2008. Preparation and characteristics of carbon-supported platinum catalyst and its application in the removal of phenolic pollutants in aqueous solution by microwave-assisted catalytic oxidation. J. Hazard. Mater., 157:179-186.
  • Borysiewicz, M., Kolsut, W. 2002. Preliminary Risk Profile Pentachlorophenol, Institute of Environmental Protection, Warsaw, Poland.
  • Bosso, L. 2014. Fungi in pentachlorophenol adsorption and degradation: novel bioremediation and biotechnological tools. PhD Thesis, University of Naples Federico II Department of Agriculture, Chile in Environmental Resources Sciences, 176 pp.
  • Canadian Council of Ministers of the Environment (CCME) 1997. Canadian soil quality guidelines for pentachlorophenol: environmental and human health, Winnipeg Manitoba, Canada, ISBN:0-662-25521-6.
  • Cheng, R., Chen, C., Liu, G., Zheng, X., Li, G., Li, J. 2015. Removing pentachlorophenol from water using a nanoscale zero-valent iron/H2O2 system. Chemosphere, 141:138-143.
  • Deng, S., Ma, R., Yu, Q., Huang, J., Yu, G. 2009. Enhanced removal of pentachlorophenol and 2,4-D from aqueous solution by an aminated biosorbent. J. Hazard. Mater., 165:408-414.
  • Devi, P., Saroha, AK. 2014. Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent. Bioresour. Technol., 169:525-531.
  • Diagboya, PN., Olu-Owolabi, BI., Adebowale, KO. 2014. Microscale scavenging of pentachlorophenol in water using amine and tripolyphosphate-grafted SBA-15 silica: Batch and modeling studies. J. Environ. Manage., 146:42-49.
  • Dionysiou, DD., Khodadoust, AP., Kern, AM., Suidan, MT., Baudin, I., Laine, JM. 2000. Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO2 rotating disk reactor. Appl. Catal. B., 24:139-155.
  • Estevinho, BN., Ratola, N., Alves, A., Santos, L. 2006. Pentachlorophenol removal from aqueous matrices by sorption with almond shell residues. J. Hazard. Mater., 137:1175-1181.
  • Estevinho, BN., Riberio, E., Alves, A., Santos, L. 2008. A preliminary feasibility study for pentachlorophenol column sorption by almond shell residues. Chem. Eng. J., 136:188-194.
  • European Commission (EC) 2000. Water Frame Work Directive (2000/60/EC), European Parliament and Council establishing a framework for the community action in the field of water policy. Available from: http://ec.europa.eu
  • Ezzatahmadi, N., Ayoko, GA., Millar, GJ., Speight, R., Yan, C., Li, J., Li, S., Zhu, J., Xi, Y. 2017. Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review. Chem. Eng. J., 312:336-350.
  • Heidari, Z., Motevasel, M., Jaafarzadeh, NA. 2015. Application of electro-fenton (EF) process to the removal of pentachlorophenol from aqueous solutions. Iranian J. Sci. Technol., 4:76-87.
  • Kim, EY., Choi, YJ., Chae, HJ., Chu, KH. 2006. Removal of aqueous pentachlorophenol by horseradish peroxidase in the presence of surfactants. Biotechnol. Bioprocess Eng., 11:462-465.
  • Lattemann, S. 2010. Development of an environmental impact assessment and decision support system for seawater desalination plants, CRC Press, Taylor and Francis Group, USA, New York, 288 pp.
  • Mathialangan, T., Viraraghavan, T. 2009. Biosorption of pentachlorophenol from aqueous solutions by a fungal biomass. Bioresour. Technol., 100:549-558.
  • Petrescu, CM., Stana, I., Mihali, CV., Turcuş, V., Bratosin, D. 2016. Flow cytometric and microscopic analysis of green alga Chlorella fusca exposed to pentachlorophenol. Res. J. Agric. Sci., 48:121-129.
  • Razak, ARA., Ujang, Z., Ozaki, H. 2007. Removal of endocrine disrupting chemicals (EDCs) using low pressure reverse osmosis membrane (LPROM). Water Sci. Technol., 56:161- 168.
  • Ren, J., He, S., Ye, C., Chen, G., Sun, C. 2012. The ozone mass transfer characteristics and ozonation of pentachlorophenol in a novel microchannel reactor. Chem. Eng. J., 210:374-384.
  • Rubilar, O., Diez, MC., Gianfreda, L. 2008. Transformation of chlorinated phenolic compounds by white rot fungi. Crit. Rev. Env. Sci. Tec., 38:227-268.
  • Ruder, AM., Yiin, JH. 2011. Mortality of US pentachlorophenol production workers through 2005. Chemosphere, 83:851-861.
  • Samarghandi, MR., Rahmani, AR., Samadi, MT., Kiamanesh, M., Azarian, G. 2015. Degradation of pentachlorophenol in aqueous solution by the UV/ZrO2/H2O2 photocatalytic process. Avicenna J. Environ Health Eng., 2:1-6.
  • Sanches, S., Penetra, A., Rodrigues, A., Ferreira, E., Cardoso, VV., Benoliel, MJ., Crespo MTB., Pereira, VJ., Crespo, J.G. 2012. Nanofiltration of hormones and pesticides in different real drinking water sources. Sep. Purif. Technol., 94:44-53.
  • Shokoohi, R., Azizi, S., Ghiasian, SA., Poormohammadi, A. 2016. Biosorption of pentachlorophenol from aqueous solutions by Aspergillus Niger biomass. Iranian J. Toxicol., 10:33-39.
  • Shokoohi, R., Azizi, S., Poormohammadi, A., Panahi, F. 2015. Study of pentachlorophenol biosorption by phanerochaete Chrysosporium biomass: kinetics and adsorption isotherms modeling. Pharm. Lett., 7:59-65.
  • Singh, H. 2006. Mycoremediation: fungal bioremediation, John Wiley & Sons, New Jersey, USA, 592 pp.
  • Suegara, J., Lee, BD., Espino, MP., Nakai, S., Hosomi, M. 2005. Photodegradation of pentachlorophenol and its degradation pathways predicted using density functional theory. Chemosphere, 61:341-346.
  • Tan, D., Zhang, J. 2008. Estimates of PCP-Na consumption in districts and provinces in China by the top-down calculation method. Environ. Pollut. Contr., 30:17-20.
  • Tso, C., Shih, Y. 2014. The reactivity of well-dispersed zerovalent iron nanoparticles toward pentachlorophenol in water. Water Res., 72:372-380.
  • United States Department of Health and Human Services Public Health Service (USDHHS) 2001. Toxicological profile for pentachlorophenol, agency for toxic substances and disease registry, September.
  • Van der Bruggen, B., Vandecasteele, C. 2003. Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ. Pollut., 122:435-445.
  • Velasquez, M., Hester, PT. 2013. An analysis of multi-criteria decision making methods. Int. J. Oper. Res., 10:56-66.
  • Wiles, MC., Huebner, HJ., McDonald, TJ., Donnelly, KC., Phillips, TD. 2005. Matrix-immobilized organoclay for the sorption of polycyclic aromatic hydrocarbons and pentachlorophenol from groundwater. Chemosphere, 59:1455- 1464.
  • Yerüstü Su Kaynakları Yönetmeliği (YSKY), 2012. Yerüstü Su Kaynakları Yönetmeliği. 28483 Sayılı Resmi Gazete.
  • Yerüstü Su Kaynakları Yönetmeliği (YSKY), 2016. Yerüstü Su Kaynakları Yönetmeliğinde Değişiklik Yapılmasına Dair Yönetmelik. 29797 Sayılı Resmi Gazete.
  • Zhang, K., Randelovic, A., Page, D., McCarthy, DT., Deletic, A. 2014. The validation of stormwater biofilters for micropollutant removal using in situ challenge tests. Ecol. Eng., 67:1-10.
  • Zolfaghari, M., Drogui, P., Seyhi, B., Brar, SK., Buelna, G., Dube, R. 2014. Occurrence, fate and effects of di (2-ethylhexyl) phthalate in wastewater treatment plants: A review. Environ. Pollut., 194:281-293.