Drosophila: Çevresel Kirleticilerin Toksisitesini Değerlendirmek İçin Umut Veren Bir Model

Çevre kirliliği artık sağlığımız ve gıda güvenliğimiz üzerinde olumsuz etkileri olan önemli bir küresel sorun haline gelmiştir. İnsanlar ve hayvanlar, günlük olarak kendilerini zayıflatıcı kontaminasyon seviyelerine maruz kalmaktadır. Dünya genelinde tek başına hava kirliliği başlıca akciğer kanseri, kronik obstrüktif akciğer hastalığı (KOAH), felç, kalp yetmezliği ve solunum yolu enfeksiyonları sebebiyle her yıl milyonlarca erken ölüme neden olmakta ve Dünya Sağlık Örgütü (WHO)’ne göre, insanlığın %99’u önerilen seviyelerin üzerinde kirletici içeren havayı solumaktadır. 2022-2025 için iklim değişikliği ve biyolojik çeşitliliğin yanı sıra Birleşmiş Milletler (BM), üçüncü desteğini “kirlilik içermeyen bir gezegen” hedefi olarak belirlemiştir. Kirliliği azaltmak ve kirlilikle ilgili hastalık yükümüzü hafifletmek için hedefe özel stratejiler geliştirmemiz gerekmektedir. Bu amaçla, her bir kimyasal ve doğal kirleticinin risk değerlendirmesi ve toksisite çalışmalarından elde edilen somut kanıtlar çok önemli görünmektedir. Her kirletici için olası etki mekanizmalarını araştırmak ve kapsamlı in vivo hayvan testleri yoluyla bu kirleticilerin toksik potansiyellerini ve güvenli sınırlarını saptanmak için titiz çaba gösterilmelidir. Yüksek çalışma maliyetleri ve daha yüksek omurgalıların kullanımına ilişkin etik sorunlar gibi çeşitli faktörler, geleneksel in vivo testlerin verimli kullanımını engelleyici bir şekilde kısıtlamaktadır. Bu nedenle, toksisite çalışmaları için D. melanogaster gibi daha basit ve dinamik model organizmalar tercih edilebilir, çünkü insan hastalıklarıyla ilgili genlerin %75’inin D. melanogaster’de homologları olduğu bilinmektedir, bu da farklı anomalilerin araştırılmasını kolaylaştırmaktadır. Bu derleme, D. melanogaster kullanılarak çevresel kirleticilerle ilgili çalışmaları belirterek çevresel kirleticilere maruz kalmayla ilgili risklerin kapsamlı bir analizini sunmayı amaçlamaktadır.

Drosophila: A Promising Model for Evaluating the Toxicity of Environmental Pollutants

Environmental contamination has now become a major global issue with adverse effects on our health and food security. Humans and animals are being exposed to debilitating levels of contamination on a daily basis. Across the globe, air pollution alone causes millions of premature deaths annually, mainly from lung cancer, chronic obstructive pulmonary disease (COPD), stroke, heart failure, and respiratory infections, and according to World Health Organization (WHO), 99% of humanity breathes air containing contaminants above recommended levels. The United Nations (UN) has identified “a pollution-free planet” goal among its three pillars, besides climate change and biodiversity for 2022–2025. In order to mitigate contamination and relieve our burden of pollution-related disease, we need to devise target-specific strategies. To that end, risk assessment of each chemical and natural contaminants and solid evidence from toxicity studies appear to be of paramount importance. Meticulous efforts should be made to look into possible mechanisms of action for each pollutant and detect their toxic potential and safe limits through comprehensive in vivo animal testing. Various factors such as high operational costs and ethical issues concerning the use of higher vertebrates frustratingly restrict the efficient use of traditional in vivo testing. Therefore, simpler and more dynamic model organisms like Drosophila melanogaster could be favored for toxicity studies, as 75% of the genes related with human diseases are known to have homologs in D. melanogaster, which facilitates research into different anomalies. This review aims to present the picture of studies regarding environmental pollutants that employed using D. melanogaster, attempting to offer a comprehensive analysis of risks involved in exposure to environmental pollutants.

___

  • Abou-Donia, MB., El-Masry, EM., Abdel-Rahman, AA., McLendon, RE. and Schiffman, SS. 2008. Splenda alters gut microflora and increases intestinal p-glycoprotein and cytochrome p-450 in male rats. J. Toxicol. Environ. Health A, 71: 1415-1429. https://doi.org/10.1080/15287390802328630
  • Al-Gubory, KH. and Garrel, C. 2012. Antioxidative signaling pathways regulate the level of reactive oxygen species at the endometrial-extraembryonic membranes interface during early pregnancy. Int. J. Biochem. Cell Biol., 44: 1511-1518. https://doi.org/10.1016/j.biocel.2012.06.017
  • Alimba, CG. and Faggio, C. 2019. Microplastics in the marine environment: current trends in environmental pollution and mechanisms of toxicological profile. Environ. Toxicol. Pharmacol., 68: 61-74. https://doi.org/10.1016/j.etap.2019.03.001
  • Avio, CG., Gorbi, S., Milan, M., Benedetti, M., Fattorini, D., d’Errico, G., Pauletto, M., Bargelloni, L. and Regoli, F. 2015. Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ. Pollut., 198: 211-222. https://doi.org/10.1016/j.envpol.2014.12.021
  • Barabadi, H., Najafi, M., Samadian, H., Azarnezhad, A., Vahidi, H., Mahjoub, MA., Koohiyan, M. and Ahmadi, A. 2019. A systematic review of the genotoxicity and antigenotoxicity of biologically synthesized metallic nanomaterials: are green nanoparticles safe enough for clinical marketing? Medicina (Kaunas), 55: 439. https://doi.org/10.3390/medicina55080439
  • BASF Online Report. 2020. 2020. https://report.basf.com/2020/en/
  • Bianchi, J., Mantovani, MS. and Marin-Morales, MA. 2015. Analysis of the genotoxic potential of low concentrations of Malathion on the Allium cepa cells and rat hepatoma tissue culture. J. Environ. Sci., 36: 102-111. https://doi.org/10.1016/j.jes.2015.03.034
  • Brandon, JA., Freibott, A. and Sala, LM. 2020. Patterns of suspended and salp‐ingested microplastic debris in the North Pacific investigated with epifluorescence microscopy. Limnol. Ocean Let., 5: 46-53. https://doi.org/10.1002/lol2.10127
  • Breton, J., Massart, S., Vandamme, P., De Brandt, E., Pot, B. and Foligné, B. 2013. Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC Pharmacol. Toxicol., 14: 1-11. https://doi.org/10.1186/2050-6511-14-62
  • Buck Louis, GM. 2014. Persistent environmental pollutants and couple fecundity: an overview. Reproduction, 147: R97-R104. https://doi.org/ 10.1530/REP-13-0472
  • Carbajo, JB., Perdigón-Melón, JA., Petre, AL., Rosal, R., Letón, P. and García-Calvo, E. 2015. Personal care product preservatives: risk assessment and mixture toxicities with an industrial wastewater. Water Res., 72: 174-185. https://doi.org/10.1016/j.watres.2014.12.040
  • Carbery, M., O’Connor, W. and Palanisami, T. 2018. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ. Int., 115: 400-409. https://doi.org/10.1016/j.envint.2018.03.007
  • Chang, JW., Yan, BR., Chang, MH., Tseng, SH., Kao, YM., Chen, JC. and Lee, CC. 2014. Cumulative risk assessment for plasticizer-contaminated food using the hazard index approach. Environ. Pollut., 189: 77-84. https://doi.org/10.1016/j.envpol.2014.02.005
  • Charroux, B. and Royet, J. 2012. Gut-microbiota interactions in non-mammals: What can we learn from Drosophila? Semin. Immunol., 24: 17-24. https://doi.org/10.1016/j.smim.2011.11.003
  • Chiang, MH., Ho, SM., Wu, HY., Lin, YC., Tsai, WH., Wu, T., Lai, C-H. and Wu, C-L. 2022. Drosophila Model for Studying Gut Microbiota in Behaviors and Neurodegenerative Diseases. Biomedicines, 10: 596. https://doi.org/ 10.3390/biomedicines10030596
  • Choi, JJ., Eum, SY., Rampersaud, E., Daunert, S., Abreu, MT. and Toborek, M. 2013. Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ. Health Perspect., 121: 725-730. https://doi.org/10.1289/ehp.1306534
  • Claus, SP., Guillou, H. and Ellero-Simatos, S. 2016. The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes, 2: 16003. https://doi.org/ 10.1038/npjbiofilms.2016.3
  • Cleuvers, M. 2003. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol. Lett., 142: 185-194. https://doi.org/10.1016/s0378-4274(03)00068-7
  • Cleuvers, M. 2004. Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol. Environ. Saf., 59: 309-315. https://doi.org/10.1016/S0147-6513(03)00141-6
  • Darfeuille-Michaud, A., Boudeau, J., Bulois, P., Neut, C., Glasser, AL., Barnich, N., Bringer, M-A., Swidsinski, A., Beaugerie, L. and Colombel, J-F. 2004. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology, 127: 412-421. https://doi.org/10.1053/j.gastro.2004.04.061
  • Davidson, PW., Strain, JJ., Myers, GJ., Thurston, SW., Bonham, MP., Shamlaye, CF., Stokes-Riner, A., Wallace, JM., Robson, PJ., Duffy, EM., Georger, LA., Sloane-Reeves, J., Cernichiari, E., Canfield, RL., Cox, C., Huang, LS., Janciuras, J. and Clarkson, TW. 2008. Neurodevelopmental effects of maternal nutritional status and exposure to methylmercury from eating fish during pregnancy. Neurotoxicology, 29: 767-775. https://doi.org/10.1016/j.neuro.2008.06.001
  • de Sousa, G., Nawaz, A., Cravedi, JP. and Rahmani R. 2014. A concentration addition model to assess activation of the pregnane X receptor (PXR) by pesticide mixtures found in the French diet. Toxicol. Sci., 141: 234-243. https://doi.org/10.1093/toxsci/kfu120
  • Demir, E. 2020a. An in vivo study of nanorod, nanosphere, and nanowire forms of titanium dioxide using drosophila melanogaster: toxicity, cellular uptake, oxidative stress, and DNA damage. J. Toxicol. Environ. Health Part A, 83: 456-469. https://doi.org/10.1080/15287394.2020.1777236
  • Demir, E. 2020b. Drosophila as a model for assessing nanopesticide toxicity. Nanotoxicology, 14: 1271-1279. https://doi.org/10.1080/17435390.2020.1815886
  • Demir, E. 2021b. Adverse biological effects of ingested polystyrene microplastics using Drosophila melanogaster as a model in vivo organism. J. Toxicol. Environ. Health Part A, 84: 649-660. https://doi.org/10.1080/15287394.2021.1913684
  • Demir, E. 2021c. A review on nanotoxicity and nanogenotoxicity of different shapes of nanomaterials. J. Appl. Toxicol., 41: 118-147. https://doi.org/10.1002/jat.4061
  • Demir, E. 2022. Mechanisms and biological impacts of graphene and multi-walled carbon nanotubes on Drosophila melanogaster: oxidative stress, genotoxic damage, phenotypic variations, locomotor behavior, parasitoid resistance, and cellular immune response. J. Appl. Toxicol., 42: 450-474. https://doi.org/10.1002/jat.4232
  • Demir, E., Turna, F., Aksakal, S., Kaya, B. and Marcos, R. 2014. Genotoxicity of different sweeteners in Drosophila. Fresen. Environ. Bull., 23: 3426-3432.
  • Eom, HJ., Liu, Y., Kwak, GS., Heo, M., Song, KS., Chung, YD., Chon, TS. And Choi, J. 2017. Inhalation toxicity of indoor air pollutants in Drosophila melanogaster using integrated transcriptomics and computational behavior analyses. Sci. Rep., 7: 1-15. https://doi.org/10.1038/srep46473
  • Fazeli, M., Hassanzadeh, P. and Alaei, S. 2011. Cadmium chloride exhibits a profound toxic effect on bacterial microflora of the mice gastrointestinal tract. Hum. Exp. Toxicol., 30: 152-159. https://doi.org/10.1177/0960327110369821
  • Feng, J., Cerniglia, CE. and Chen, H. 2012. Toxicological significance of azo dye metabolism by human intestinal microbiota. Front. Biosci., 4: 568-586. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870118/?report=reader
  • Fidan, M. and Ayar A. 2021. An investigation of the toxic effects of water samples collected from 3 different regions of antarctica on Drosophila melanogaster. Int. J. Sci. Lett., 3: 97-108. https://doi.org/10.38058/ijsl.961391
  • Flaherty, CM. and Dodson, S.I. 2005. Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere, 61: 200-207. https://doi.org/10.1016/j.chemosphere.2005.02.016
  • Fraser, CI., Kay, GM., du Plessis, M. and Ryan, PG. 2016. Breaking down the barrier: Dispersal across the Antarctic Polar Front. Ecography (Copenhagen), 40: 235-237. https://doi.org/10.1111/ecog.02449
  • Gao, Y., Feng, J., Han, F. and Zhu, L. 2016. Application of biotic ligand and toxicokinetic–toxicodynamic modeling to predict the accumulation and toxicity of metal mixtures to zebrafish larvae. Environ. Pollut., 213: 16-29. https://doi.org/10.1016/j.envpol.2016.01.073
  • Ghezzi, P. 2020. Environmental risk factors and their footprints in vivo - A proposal for the classification of oxidative stress biomarkers. Redox Biol., 34: 101442. https://doi.org/10.1016/j.redox.2020.101442
  • Gundacker, C. and Hengstschläger, M. 2012. The role of the placenta in fetal exposure to heavy metals. Wien Med. Wochenschr., 162: 201-206. https://doi.org/10.1007/s10354-012-0074-3
  • Han, X., Geller, B., Moniz, K., Das, P., Chippindale, AK. and Walker, VK. 2014. Monitoring the developmental impact of copper and silver nanoparticle exposure in Drosophila and their microbiomes. Sci. Total Environ., 487:822-829. https://doi.org/10.1016/j.scitotenv.2013.12.129
  • Jennings, BH. 201. Drosophila-a Versatile Model in Biology & Medicine. Mater. Today, 14: 190-195. https://doi.org/10.1016/S1369-7021(11)70113-4
  • Jensen, BH., Petersen, A., Nielsen, E., Christensen, T., Poulsen, ME. and Andersen, JH. 2015. Cumulative dietary exposure of the population of Denmark to pesticides. Food Chem. Toxicol., 83: 300-307. https://doi.org/10.1016/j.fct.2015.07.002
  • Jia YC, Jin S, Hu KK, Geng L, Han CH, Kang RX, Pang, Y., Ling, E., Tan, EK., Pan, Y. and Liu, W. 2021. Gut microbiome modulates Drosophila aggression through octopamine signaling. Nat. Commun., 12: 2698. https://doi.org/ 10.1038/s41467-021-23041-y
  • Jimenez-Guri, E., Roberts, KE., García, FC., Tourmente, M., Longdon, B. and Godley, BJ. 2021. Transgenerational effects on development following microplastic exposure in Drosophila melanogaster. Peer J., 9: e11369. https://doi.org/10.7717/peerj.11369
  • Joly C, Gay-Quéheillard J, Léké A, Chardon K, Delanaud S, Bach V and Khorsi-Cauet, H. 2013. Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) and in the rat. Environ. Sci. Pollut. Res., 20: 2726-2734. https://doi.org/10.1007/s11356-012-1283-4
  • Kadawathagedara, M., de Lauzon-Guillain, B. and Botton, J. 2018. Environmental contaminants and child’s growth. J. Dev. Orig. Health Dis., 9: 632-641. https://doi.org/10.1017/S2040174418000995
  • Kapeleka, JA., Sauli, E. and Ndakidemi, PA. 2021. Pesticide exposure and genotoxic effects as measured by DNA damage and human monitoring biomarkers. Int. J. Environ. Health Res., 31: 805-822. https://doi.org/10.1080/09603123.2019.1690132
  • Karwacka, A., Zamkowska, D., Radwan, M. and Jurewicz, J. 2019. Exposure to modern, widespread environmental endocrine disrupting chemicals and their effect on the reproductive potential of women: an overview of current epidemiological evidence. Hum. Fertil. (Camb)., 22: 2-25. https://doi.org/10.1080/14647273.2017.1358828
  • Kay, VR., Chambers, C. and Foster, WG. 2013. Reproductive and developmental effects of phthalate diesters in females. Crit. Rev. Toxicol., 43: 200-219. https://doi.org/10.3109/10408444.2013.766149
  • Kim, KS., Lee, YM., Kim, SG., Lee, IK., Lee, HJ., Kim, JH., Kim, J., Moon, H-B., Jacobs Jr., DR. and Lee, D-H. 2014. Associations of organochlorine pesticides and polychlorinated biphenyls in visceral vs. subcutaneous adipose tissue with type 2 diabetes and insulin resistance. Chemosphere, 94: 151-157. https://doi.org/ 10.1016/j.chemosphere.2013.09.066
  • Klingmüller, D. and Alléra, A. 2011. Endocrine disruptors: hormone-active chemicals from the environment: a risk to humans? Dtsch. Med. Wochenschr., 136: 967-972. https://doi.org/10.1055/s-0031-1275832
  • Kortenkamp, A. 2007. Ten years of mixing cocktails: are view of combination effects of endocrine-disrupting chemicals. Environ. Health Perspect., 115: 98-105. https://doi.org/10.1289/ehp.9357
  • Krüger, M., Shehata, AA., Schrödl, W. and Rodloff, A. 2013. Glyphosate suppresses the antagonistic effect of Enterococcus spp. on Clostridium botulinum. Anaerobe, 20: 74-78. https://doi.org/ 10.1016/j.anaerobe.2013.01.005
  • Kumar, R., Sankhla, MS., Kumar, R. and Sonone, SS. 2021. Impact of pesticide toxicity in aquatic environment. Biointerface Res. Appl. Chem., 11: 10131-10140. https://doi.org/10.33263/BRIAC113.1013110140
  • Kümmerer, K. 2009. The presence of pharmaceuticals in the environment due to human use--present knowledge and future challenges. J. Environ. Manage., 90: 2354-2366. https://doi.org/10.1016/j.jenvman.2009.01.023
  • Kuraishi, T., Hori, A. and Kurata, S. 2013. Host-microbe interactions in the gut of Drosophila melanogaster. Front. Physiol., 4: 375. https://doi.org/10.3389/fphys.2013.00375
  • Le, TH., Lim, ES., Hong, NH., Lee, SK., Shim, YS., Hwang, JR., Kim, YH. and Min, J. 2013. Proteomic analysis in Daphnia magna exposed to As(III), As(V) and Cd heavy metals and their binary mixtures for screening potential biomarkers. Chemosphere, 93: 2341-2348. https://doi.org/10.1016/j.chemosphere.2013.08.031
  • Lepage, P., Häsler, R., Spehlmann, ME., Rehman, A., Zvirbliene, A., Begun, A., Ott, S., Kupcinskas, L., Doré, J., Raedler, A. and Schreiber, S. 2011. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology, 141: 227-236. https://doi.org/10.1053/j.gastro.2011.04.011
  • Li, Y., Pan, L., Li, P., Yu, G., Li, Z., Dang, S., Faguang, J. and Yandong, N. 2022. Microbiota Aggravates the Pathogenesis of Drosophila Acutely Exposed to Vehicle Exhaust. Heliyon, (Baskıda). http://dx.doi.org/10.2139/ssrn.4025900
  • Ling, Z., Li, Z., Liu, X., Cheng, Y., Luo, Y., Tong, X., Yuan, L., Wang Y., Sun, J., Li, L. and Xiang, C. 2014. Altered fecal microbiota composition associated with food allergy in infants. Appl. Environ. Microbiol., 80: 2546-2554. https://doi.org/ 10.1128/AEM.00003-14
  • Liu, HP., Cheng, J., Chen, MY., Chuang, TN., Dong, JC., Liu, CH. and Lin, WY. 2022. Neuromuscular, retinal, and reproductive impact of low-dose polystyrene microplastics on Drosophila. Environ. Pollut., 292: 118455. https://doi.org/10.1016/j.envpol.2021.118455
  • Liu, Z., Huang, Y., Jiao, Y., Chen, Q., Wu, D., Yu, P., Li, Y., Cai, M. and Zhao, Y. 2020. Polystyrene nanoplastic induces ROS production and affects the MAPK-HIF-1/NFkBmediated antioxidant system in Daphnia pulex. Aquat. Toxicol., 220: 105420. https://doi.org/10.1016/j.aquatox.2020.105420
  • Lloyd, TE. and Taylor, JP. 2020. Flightless flies: Drosophila models of neuromuscular disease. Ann. N.Y. Acad. Sci., 1184: e1-e20. https://doi.org/ 10.1111/j.1749-6632.2010.05432.x
  • Lu, K., Abo, RP., Schlieper, KA., Graffam, ME., Levine, S., Wishnok, JS., Swenberg, JA., Tannenbaum, SR. and Fox, JG. 2014. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ. Health Perspect., 122: 284-291. https://doi.org/10.1289/ehp.1307429
  • Luo, ZC., Liu, JM. and Fraser, WD. 2010. Large prospective birth cohort studies on environmental contaminants and child health-Goals, challenges, limitations and needs. Med. Hypotheses, 74: 318-332. https://doi.org/10.1016/j.mehy.2009.08.044
  • Martín, JMP., Peropadre, A., Herrero, Ó., Freire, PF., Labrador, V. and Hazen, MJ. 2010. Oxidative DNA damage contributes to the toxic activity of propylparaben in mammalian cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 702: 86-91. https://doi.org/10.1016/j.mrgentox.2010.07.012
  • Marx, C., Mühlbauer, V., Krebs, P. and Kuehn, V. 2015. Environmental risk assessment of antibiotics including synergistic and antagonistic combination effects. Sci. Total Environ., 524: 269-279. https://doi.org/10.1016/j.scitotenv.2015.04.051
  • Maurice, CF., Haiser, HJ. and Turnbaugh, PJ. 2013. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell, 152: 39-50. https://doi.org/ 10.1016/j.cell.2012.10.052
  • Menard, S., Guzylack‐Piriou, L., Leveque, M., Braniste, V., Lencina, C., Naturel, M., Moussa, L., Sekkal, S., Harkat, C., Gaultier, E., Theodorou, V. and Houdeau, E. 2014. Food intolerance at adulthood after perinatal exposure to the endocrine disruptor bisphenol A. FASEB J., 28: 4893-4900. https://doi.org/ 10.1096/fj.14-255380
  • Michalke, K., Schmidt, A., Huber, B., Meyer, J., Sulkowski, M., Hirner, AV., Boertz, J., Mosel, F., Dammann, P., Hilken, G., Hedrich, HJ., Dorsch, M., Rettenmeier, AW. and Hensel, R. 2008. Role of intestinal microbiota in transformation of bismuth and other metals and metalloids into volatile methyl and hydride derivatives in humans and mice. Appl. Environ. Microbiol., 74: 3069-3075. https://doi.org/10.1128/AEM.02933-07
  • Milić, M., Žunec, S., Micek, V., Kašuba, V., Mikolić, A., Lovaković, BT., Semren, TŽ., Pavičić, I., Čermak, AMM., Pizent, A., Vrdoljak, AL., Valencia-Quintana, R., Sánchez-Alarcón, J. and Želježić, D. 2018. Oxidative stress, cholinesterase activity, and DNA damage in the liver, whole blood, and plasma of Wistar rats following a 28-day exposure to glyphosate. Arh. Hig. Rada. Toksikol., 69: 154-168. https://doi.org/10.2478/aiht-2018-69-3114
  • Mohr, SE., Hu, Y., Kim, K., Housden, BE. and Perrimon, N. 2014. Resources for Functional Genomics Studies in Drosophila melanogaster. Genetics, 197: 1-18. https://doi.org/10.1534/genetics.113.154344
  • Moskalev, A., Shaposhnikov, M., Snezhkina, A., Kogan, V., Plyusnina, E., Peregudova, D., Melnikova, N., Uroshlev, L, Mylnikov, S., Dmitriev, A., Plusnin, S., Fedichev, P. and Kudryavtseva, A. 2014. Mining gene expression data for pollutants (dioxin, toluene, formaldehyde) and low dose of gamma-irradiation. PLoS One, 9: e86051. https://doi.org/ 10.1371/journal.pone.0086051
  • Mrema, EJ., Rubino, FM., Brambilla, G., Moretto, A., Tsatsakis, AM. and Colosio, C. 2013. Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology, 307: 74-88. https://doi.org/ 10.1016/j.tox.2012.11.015
  • Nakatsu G, Li X, Zhou H, Sheng J, Wong SH, Wu WKK, Ng, SC., Tsoi, H., Dong, Y., Zhang, N., He, Y., Kang, Q., Cao, L., Wang, K., Zhang, J., Liang, Q., Yu, J. and Sung, JJY. 2015. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat. Commun., 6: 1-9. https://doi.org/ 10.1038/ncomms9727
  • Negri, E., Bosetti, C., Fattore, E. and La Vecchia, C. 2003. Environmental exposure to polychlorinated biphenyls (PCBs) and breast cancer: a systematic review of the epidemiological evidence. Eur. J. Cancer Prev., 12: 509-516. https://www.jstor.org/stable/45074377
  • Nettleton, JA., Lutsey, PL., Wang, Y., Lima, JA., Michos, ED. and Jacobs, DR. 2009. Diet soda intake and risk of incident metabolic syndrome and type 2 diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care, 32: 688-694. https://doi.org/ 10.2337/dc08-1799
  • Niu, Z., Zang, X. and Zhang Y. 2015. Using physiologically based pharmacokinetic models to estimate the health risk of mixtures of trihalomethanes from reclaimed water. J. Hazard Mater., 285: 190-198. https://doi.org/10.1016/j.jhazmat.2014.11.051
  • Palmnäs, MS., Cowan, TE., Bomhof, MR., Su, J., Reimer, RA., Vogel, HJ., Hittel, DS. and Sheareret, J. 2014. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PloS One, 9: e109841. https://doi.org/10.1371/journal.pone.0109841
  • Paul, KB., Hedge, JM., Bansal, R., Zoeller, RT., Peter, R., DeVito, MJ. and Crofton, KM. 2012. Developmental triclosan exposure decreases maternal, fetal, and early neonatal thyroxine: a dynamic and kinetic evaluation of a putative mode-of-action. Toxicology, 300: 31-45. https://doi.org/10.1016/j.tox.2012.05.023
  • Posgai, R., Ahamed, M., Hussain, SM., Rowe, JJ. and Nielsen, MG. 2009. Inhalation method for delivery of nanoparticles to the Drosophila respiratory system for toxicity testing. Sci. Total Environ., 408: 439-443. https://doi.org/10.1016/j.scitotenv.2009.10.008
  • Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J. and Zhang, F. 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490: 55-60. https://doi.org/ 10.1038/nature11450
  • Rand, MD. 2010. Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicol. Teratol., 32: 74-83. https://doi.org/10.1016/j.ntt.2009.06.004
  • Rider, CV., Carlin, DJ., Devito, MJ., Thompson, CL. and Walker, NJ. 2012. Mixtures research at NIEHS: an evolving program. Toxicology, 313: 94-102. https://doi.org/ 10.1016/j.tox.2012.10.017.
  • Schretter, CE., Vielmetter, J., Bartos, I., Marka, Z., Marka, S., Argade, S. and Mazmanian, SK. 2018. A gut microbial factor modulates locomotor behaviour in Drosophila. Nature, 563: 402-406. https://doi.org/10.1038/s41586-018-0634-9
  • Shehata, AA., Schrödl, W., Aldin, AA., Hafez, HM. and Krüger, M. 2013. The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro. Curr. Microbiol., 66: 350-358. https://doi.org/10.1007/s00284-012-0277-2
  • Shilpa, O., Anupama, KP., Antony, A. and Gurushankara, HP. 2021. Lead (Pb)-induced oxidative stress mediates sex-specific autistic-like behaviour in Drosophila melanogaster. Mol. Neurobiol., 58: 6378-6393. https://doi.org/10.1007/s12035-021-02546-z
  • Shin, SC., Kim, SH., You, H., Kim, B., Kim, AC., Lee, KA., Yoon, JH., Ryu, JH. and Lee, WJ. 2011. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science, 334: 670-674. https://doi.org/10.1126/science.1212782
  • Sökmen, TÖ., Sulukan, E., Türkoğlu, M., Baran, A., Özkaraca, M. and Ceyhun, SB. 2019. Polystyrene nanoplastics (20 nm) are able to bioaccumulate and cause oxidative DNA damages in the brain tissue of zebrafish embryo (Danio rerio). Neurotoxicology, 77: 51-59. https://doi.org/10.1016/j.neuro.2019.12.010
  • Song, XQ., Wang, ZG., Wang, Y., Huang, YY., Sun, YX., Ouyang, Y., Xie, C-Z. and Xu, J-Y. 2020. Syntheses, characterization, DNA/HSA binding ability and antitumor activities of a family of isostructural binuclear lanthanide complexes containing hydrazine Schiff base. J. Biomol. Struct. Dyn., 38: 733-743. https://doi.org/10.1080/07391102.2019.1587511
  • Sriram, K., Lin, GX., Jefferson, AM., Stone, S., Afshari, A., Keane, MJ., McKinney, W., Jackson, M., Chen, BT., Schwegler-Berry, D., Cumpston, A., Cumpston, JL., Roberts, JR., Frazer, DG. and Antonini, JM. 2015. Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes. Toxicology, 328: 168-178. https://doi.org/10.1016/j.tox.2014.12.015
  • Suez, J., Korem, T., Zeevi, D., Zilberman-Schapira, G., Thaiss, CA., Maza, O., Israeli, D., Zmora, N., Gilad, S., Weinberger, A., Kuperman, Y., Harmelin, A., Kolodkin-Gal, I., Shapiro, H., Halpern, Z., Segal, E. and Elinav, E. 2014. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature, 514: 181-186. https://doi.org/ 10.1038/nature13793
  • Thimmegowda, GG., Mullen, S., Sottilare, K., Sharma, A., Mohanta, SS., Brockmann, A, Dhandapany, PS. and Olsson, SB. 2020. A field-based quantitative analysis of sublethal effects of air pollution on pollinators. Proc. Natl. Acad. Sci. U.S.A., 117: 20653-20661. https://doi.org/ 10.1073/pnas.2009074117
  • Turna Demir, F. and Yavuz, M. 2020. Heavy metal accumulation and genotoxic effects in levant vole (Microtus guentheri) collected from contaminated areas due to mining activities. Environ. Pollut., 256: 113378. https://doi.org/10.1016/j.envpol.2019.113378
  • Van de Wiele, T., Vanhaecke, L., Boeckaert, C., Peru, K., Headley, J., Verstraete, W. and Siciliano, S. 2005. Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites. Environ. Health Perspect., 113: 6-10. https://doi.org/ 10.1289/ehp.7259
  • Varayoud, J., Ramos, JG., Bosquiazzo, VL., Lower, M., Munoz-de-Toro, M. and Luque, EH. 2011. Neonatal exposure to bisphenol A alters rat uterine implantation-associated gene expression and reduces the number of implantation sites. Endocrinology, 152: 1101-1111. https://doi.org/10.1210/en.2009-1037
  • Wagner, JR., Madugundu, GS. and Cadet, J. 2021. Ozone-Induced DNA Damage: A Pandora’s Box of Oxidatively Modified DNA Bases. Chem. Res. Toxicol., 34: 80-90. https://doi.org/ 10.1021/acs.chemrestox.0c00342
  • Wang, F., Li, C., Liu, W. and Jin, Y. 2012. Effect of exposure to volatile organic compounds (VOCs) on airway inflammatory response in mice. J. Toxicol. Sci., 37: 739-748. https://doi.org/10.2131/jts.37.739
  • Weber, LWD., Boll, M. and Stampfl, A. 2003. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit. Rev. Toxicol., 33: 105-136. https://doi.org/10.1080/713611034
  • Weitekamp, CA. and Hofmann, HA. 2021. Effects of air pollution exposure on social behavior: a synthesis and call for research. Environ. Health, 20: 1-13. https://doi.org/ 10.1186/s12940-021-00761-8
  • Wells, PG., McCallum, GP., Chen, CS., Henderson, JT., Lee, CJ., Perstin, J., Preston, TJ., Wiley, MJ. and Wong, AW. 2009. Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol. Sci., 108: 4-18. https://doi.org/10.1093/toxsci/kfn263
  • WHO Global Health Statistics 2015. WHO Resources on Sound Management of Pesticides. https://www.who.int/neglected_diseases/vector_ecology/pesticide-management/en/
  • Wigle, DT., Arbuckle, TE., Turner, MC., Bérubé, A., Yang, Q., Liu, S. and Krewski, D. 2008. Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants. J. Toxicol. Environ. Health B Crit. Rev., 11: 373-517. https://doi.org/10.1080/10937400801921320
  • Win-Shwe, TT. and Fujimaki, H. 2010. Neurotoxicity of toluene. Toxicol. Lett., 198: 93-99. https://doi.org/10.1016/j.toxlet.2010.06.022
  • Wong, TY. 2017. Smog induces oxidative stress and microbiota disruption. J. Food Drug. Anal., 25: 235-244. https://doi.org/ 10.1016/j.jfda.2017.02.003
  • Yu, Z., Shen, J., Li, Z., Yao, J., Li, W., Xue, L., Vandenberg, LN. and Yin, D. 2020. Obesogenic effect of sulfamethoxazole on Drosophila melanogaster with simultaneous disturbances on eclosion rhythm, glucolipid metabolism, and microbiota. Environ. Sci. Technol., 54: 5667-5675. https://doi.org/10.1021/acs.est.9b07889
  • Zhang, L., Nichols, RG., Correll, J., Murray, IA., Tanaka, N., Smith, PB., Hubbard, TD., Sebastian, A., Albert, I., Hatzakis, E., Gonzalez, FJ., Perdew, GH. and Patterson, AD. 2015. Persistent organic pollutants modify gut microbiota-host metabolic homeostasis in mice through aryl hydrocarbon receptor activation. Environ. Health Perspect., 123: 679-688. https://doi.org/10.1289/ehp.1409055
  • Zhang, Y., Wolosker, MB., Zhao, Y., Ren, H. and Lemos, B. 2020. Exposure to microplastics cause gut damage, locomotor dysfunction, epigenetic silencing, and aggravate cadmium (Cd) toxicity in Drosophila. Sci. Total Environ., 744: 140979. https://doi.org/10.1016/j.scitotenv.2020.140979
  • Zheng, X., Zhao, A., Xie, G., Chi, Y., Zhao, L., Li, H., Wang, C., Bao, Y., Jia, W, Luther, M., Su, M., Nicholson, JK. and Jia, W. 2013. Melamine-induced renal toxicity is mediated by the gut microbiota. Sci. Transl. Med., 5: 172ra22-172ra22. https://doi.org/ 10.1126/scitranslmed.3005114
Karaelmas Fen ve Mühendislik Dergisi-Cover
  • ISSN: 2146-4987
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2011
  • Yayıncı: ZONGULDAK BÜLENT ECEVİT ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Levamizolün Model Organizma Galleria mellonella’nın Bazı Biyolojik Özellikleri Üzerine Etkisi

Volkan KELEŞ, Ender BÜYÜKGÜZEL

Bazı Yosun Türlerinin Toplam Fenol İçeriklerinin, Antibakteriyel ve Antioksidan Aktivitelerinin Belirlenmesi

Şükran ÖZTÜRK, Yasin HAZER, BANU KAŞKATEPE, MUHAMMET ÖREN

Çeşitli Uzunluklardaki PEG’ler Vasıtasıyla PVC’nin “Klik” Kimyası ile Çapraz Bağlanması

Nilgün ASAN, TEMEL ÖZTÜRK, Hasibe KUDU, Ergül MEYVACI, Efkan ÇATIKER

Conformable Anlamında Kesirli Mertebeden Fokker-Planck Denkleminin Analitik Çözümü

Muammer AYATA, Ozan ÖZKAN

Sıcak Presleme Yöntemi ile Üretilen Cu-Cr Alaşımlarının Sertlik ve Elektriksel İletkenlik Özellikleri Üzerine Mekanik Alaşımlama Süresinin Etkisi

Temel VAROL, Serhatcan Berk AKÇAY, Onur GÜLER, Hüseyin Can AKSA, Hamza ÇOLAK

NiN (N=6-55) Kümelerinin Geometrik Büyümesi ile Erime Davranışı İlişkisinin İncelenmesi

Meral ERYÜREK

Callinectes sapidus’un (Mavi Yengeç) Hepatopankreas Esteraz (E. C. 3.1.1.1) Aktivitesine Metal İyonlarının (Zn+2, Co+2, Cd+2, Ni+2) in Vitro Etkilerinin Belirlenmesi

Salih GÖRGÜN

TiO2 Katkılı Elmas-Benzeri Karbon Filmlerin Yeni Bir Çözeltiden Üretilmesi ve Karakterizasyonları

Necati Başman, Mehmet GÖKÇEN, Cengiz TEMİZ

İçme Suyu Kaynaklarının Klor ve Klor Dioksit ile Dezenfeksiyonu Sonucu Meydana Gelen Dezenfeksiyon Yan Ürünleri Oluşumunun Araştırılması: İstanbul Örneği

Kadir ÖZDEMİR

Yeni Nesil Yüksek Güçlü IGBT’ler İçin Dinamik Modelleme ve Deneysel Doğrulama

Osman TANRIVERDİ, Deniz YILDIRIM