Obtaining Diatomite Reinforced Epoxy Composite and Determination of Its Thermophysical Properties

Obtaining Diatomite Reinforced Epoxy Composite and Determination of Its Thermophysical Properties

In this research, a composite material was produced by adding diatomite soil to epoxy resin. The particle size of the diatomite used is in the range of 297 to 149 microns. It was dried at 378 K before being used as a filling material. By adding 0 kg, 0.001 kg, 0.002 kg, 0.004 kg, and 0.006 kg of diatomite to the epoxy matrix, the composite was produced under atmospheric conditions. To obtain a homogeneous structure, certain amounts of Epoxy A component and diatomite were mixed first. A selected amount of epoxy component B was then added to the mixture. After one day of curing in the laboratory, necessary tests and analyses were carried out. The surface morphology of the produced composite was examined by scanning electron microscopy (SEM). As a result of the analyses and tests, it was seen that the increase in the amount of diatomite increased the porosity in the composite. In addition, it was observed that the density decreased, and the thermal conductivity coefficient varied between 0.110 W /m.K and 0.095 W /m.K It was observed that the hardness was linearly in the range of 77-80 shore D. It has been determined that the addition of diatomite tends to increase the activation energy by modeling the thermal degradation experiments performed in the PID controlled system in nitrogen environment between 300 K and 900 K. Activation energy values are calculated according to the one-dimensional diffusion function with the highest correlation coefficient (R2) according to Coats-Redfern method when the temperature rise is 10 K/min, and the conversion rate (α) is between 0.15 and 0.85.

___

  • Arat, A. Y., Kaya, H., & Baş Çep, E. (2022). Grafenli ve geri dönüştürülmüş karbon fiberli polimer kompozit malzemenin üretilerek mekanik deney çubuklarının üretimi ve incelenmesi. ImasCongress, 323–329.
  • Aydoğmuş, E. (2022). Biohybrid nanocomposite production and characterization by RSM investigation of thermal decomposition kinetics with ANN. Biomass Conversion and Biorefinery, 12(10), 4799–4816. https://doi.org/10.1007/s13399-022-02403-6
  • Aydoğmuş, E., Dağ, M., Yalçın, Z. G., & Arslanoğlu, H. (2022a). Synthesis and characterization of EPS reinforced modified castor oil-based epoxy biocomposite. Journal of Building Engineering, 47, 103897. https://doi.org/10.1016/j.jobe.2021.103897
  • Aydoğmuş, E., Dağ, M., Yalçın, Z. G., & Arslanoğlu, H. (2022b). Synthesis and characterization of waste polyethylene reinforced modified castor oil‐based polyester biocomposite. Journal of Applied Polymer Science, 139(27). https://doi.org/10.1002/app.52526
  • Chen, Y., Sui, L., Fang, H., Ding, C., Li, Z., Jiang, S., & Hou, H. (2019). Superior mechanical enhancement of epoxy composites reinforced by polyimide nanofibers via a vacuum-assisted hot-pressing. Composites Science and Technology, 174, 20–26. https://doi.org/10.1016/j.compscitech.2019.02.012
  • Conradi, M., Kocijan, A., Kosec, T., & Podgornik, B. (2020). Manipulation of TiO2 Nanoparticle/Polymer Coatings Wettability and Friction in Different Environments. Materials, 13(7), 1702. https://doi.org/10.3390/ma13071702
  • Dağ, M., Yanen, C., & Aydoğmuş, E. (2022). Bor Fabrikası Bileşenlerinin Epoksi Kompozitin Termofiziksel Özelliklerine Etkisi. European Journal of Science and Technology. https://doi.org/10.31590/ejosat.1108402
  • Dahmen, V., Redmann, A. J., Austermann, J., Quintanilla, A. L., Mecham, S. J., & Osswald, T. A. (2020). Fabrication of hybrid composite T-joints by co-curing with 3D printed dual cure epoxy. Composites Part B: Engineering, 183, 107728. https://doi.org/10.1016/j.compositesb.2019.107728
  • Davis, S., Mohandas, S., Nzoumba, G., & Yancey, T. (2016). Diatomite in Upper Eocene Jackson Group, Fayette County, Texas. Gulf Coast Association of Geological Societies Transactions, 66, 739–746.
  • George, J., & Bhattacharyya, D. (2021). Biocarbon reinforced polypropylene composite: An investigation of mechanical and filler behavior through advanced dynamic atomic force microscopy and X-ray micro CT. Express Polymer Letters, 15(3), 224–235. https://doi.org/10.3144/expresspolymlett.2021.20
  • Guo, L., Huang, J., Zhang, L., & Sun, X. (2021). Damage evolution of 3D woven carbon/epoxy composites under tension-tension fatigue loading based on synchrotron radiation computed tomography (SRCT). International Journal of Fatigue, 142, 105913. https://doi.org/10.1016/j.ijfatigue.2020.105913
  • Huang, Y. Q., Wong, C. K. C., Zheng, J. S., Bouwman, H., Barra, R., Wahlström, B., Neretin, L., & Wong, M. H. (2012). Bisphenol A (BPA) in China: A review of sources, environmental levels, and potential human health impacts. Environment International, 42, 91–99. https://doi.org/10.1016/j.envint.2011.04.010
  • İnal, O., & Ataş, A. (2018). Kıvrımsız Cam Elyaf Takviyeli Kompozit Plakalarda Pim Bağlantılarının Deneysel Olarak İncelenmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 2018(2018). https://doi.org/10.17341/gazimmfd.416441
  • Karaman, S., Karaipekli, A., Sarı, A., & Biçer, A. (2011). Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 95(7), 1647–1653. https://doi.org/10.1016/j.solmat.2011.01.022
  • Kaya, A. İ. (2016). Kompozit malzemeler ve özellikleri. Putech & Composite Poliüretan ve Kompozit Sanayi Dergisi, 29, 38–45.
  • Koo, B., Subramanian, N., & Chattopadhyay, A. (2016). Molecular dynamics study of brittle fracture in epoxy-based thermoset polymer. Composites Part B: Engineering, 95, 433–439. https://doi.org/10.1016/j.compositesb.2016.04.012
  • Li, Z., Guo, L., Zhang, L., & Wang, Q. (2018). In situ experimental investigation on the out-plane damage evolution of 3D woven carbon-fiber reinforced composites. Composites Science and Technology, 162, 101–109. https://doi.org/10.1016/j.compscitech.2018.04.024
  • Ma, Y., Liu, H., Wu, J., Yuan, L., Wang, Y., Du, X., Wang, R., Marwa, P. W., Petlulu, P., Chen, X., & Zhang, H. (2019). The adverse health effects of bisphenol A and related toxicity mechanisms. Environmental Research, 176, 108575. https://doi.org/10.1016/j.envres.2019.108575
  • Mantecón, A., Cádiz, V., Serra, A., & Martínez, P. A. (1987). Curing of N,N′-diglycidylimides with polyfunctional compounds. European Polymer Journal, 23(6), 481–488. https://doi.org/10.1016/0014-3057(87)90140-6
  • Özdemir, Y. (2019). Biyo-kompozit Malzemelerin Mekanik Özelliklerinin Geliştirilmesi [PhD Thesis, Marmara University]. https://avesis.marmara.edu.tr/yonetilen-tez/5f439633-83bf-4095-9a6d-eb0773798297/biyo-kompozit-malzemelerin-mekanik-ozelliklerinin-gelistirilmesi
  • Pathak, A. K., Borah, M., Gupta, A., Yokozeki, T., & Dhakate, S. R. (2016). Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites. Composites Science and Technology, 135, 28–38. https://doi.org/10.1016/j.compscitech.2016.09.007
  • Qi, X., Liu, M., Chen, Z., & Liang, R. (2007). Preparation and properties of diatomite composite superabsorbent. Polymers for Advanced Technologies, 18(3), 184–193. https://doi.org/10.1002/pat.847
  • Qin, Y., Leng, G., Yu, X., Cao, H., Qiao, G., Dai, Y., Zhang, Y., & Ding, Y. (2015). Sodium sulfate–diatomite composite materials for high temperature thermal energy storage. Powder Technology, 282, 37–42. https://doi.org/10.1016/j.powtec.2014.08.075
  • Rad, E. R., Vahabi, H., de Anda, A. R., Saeb, M. R., & Thomas, S. (2019). Bio-epoxy resins with inherent flame retardancy. Progress in Organic Coatings, 135, 608–612. https://doi.org/10.1016/j.porgcoat.2019.05.046
  • Şahal, H., & Aydoğmuş, E. (2021). PRODUCTION AND CHARACTERIZATION OF PALM OIL BASED EPOXY BIOCOMPOSITE BY RSM DESIGN. Hittite Journal of Science and Engineering. https://doi.org/10.17350/HJSE19030000241
  • Seachrist, D. D., Bonk, K. W., Ho, S.-M., Prins, G. S., Soto, A. M., & Keri, R. A. (2016). A review of the carcinogenic potential of bisphenol A. Reproductive Toxicology, 59, 167–182. https://doi.org/10.1016/j.reprotox.2015.09.006
  • Serra, A., Cádiz, V., Martínez, P.-A., & Mantecón, A. (1986). Preparation and reactivity of new 3,3′,4,4′-tetracarboxybenzophenone dianhydride glycidyl ester derivatives. Angewandte Makromolekulare Chemie, 140(1), 113–125. https://doi.org/10.1002/apmc.1986.051400109
  • Sogancioglu, M., Yucel, A., Yel, E., & Ahmetli, G. (2017). Production of Epoxy Composite from the Pyrolysis Char of Washed PET Wastes. Energy Procedia, 118, 216–220. https://doi.org/10.1016/j.egypro.2017.07.022
  • Sun, T., Fan, H., Wang, Z., Liu, X., & Wu, Z. (2015). Modified nano Fe2O3-epoxy composite with enhanced mechanical properties. Materials & Design, 87, 10–16. https://doi.org/10.1016/j.matdes.2015.07.177
  • Sun, T., Wang, Y., Yang, Y., Fan, H., Liu, M., & Wu, Z. (2020). A novel Fe2O3@APFS/epoxy composite with enhanced mechanical and thermal properties. Composites Science and Technology, 193, 108146. https://doi.org/10.1016/j.compscitech.2020.108146
  • Sun, T., Wu, Z., Zhuo, Q., Liu, X., Wang, Z., & Fan, H. (2014). Microstructure and mechanical properties of aminated polystyrene spheres/epoxy polymer blends. Composites Part A: Applied Science and Manufacturing, 66, 58–64. https://doi.org/10.1016/j.compositesa.2014.06.015
  • Taş, B., & Çetin, M. (2012). BİYOLOJİK ORİJİNLİ TEK DOĞAL MİNERAL: DİYATOMİT. TÜBAV Journal of Science, 5(2), 28–46.
  • Wang, B., de Godoi, F. C., Sun, Z., Zeng, Q., Zheng, S., & Frost, R. L. (2015). Synthesis, characterization and activity of an immobilized photocatalyst: Natural porous diatomite supported titania nanoparticles. Journal of Colloid and Interface Science, 438, 204–211. https://doi.org/10.1016/j.jcis.2014.09.064
  • Wongjaiyen, T., Brostow, W., & Chonkaew, W. (2018). Tensile properties and wear resistance of epoxy nanocomposites reinforced with cellulose nanofibers. Polymer Bulletin, 75(5), 2039–2051. https://doi.org/10.1007/s00289-017-2142-8
  • Xu, G., Wang, Z., Zeng, T., Cheng, S., & Fang, D. (2018). Mechanical response of carbon/epoxy composite sandwich structures with three-dimensional corrugated cores. Composites Science and Technology, 156, 296–304. https://doi.org/10.1016/j.compscitech.2018.01.015
  • Yalçın, K. A. (2010). Nanoteknoloji ve gıda sanayiinde uygulama alanları [Master’s Thesis, Namık Kemal University]. http://acikerisim.nku.edu.tr:8080/xmlui/bitstream/handle/20.500.11776/657/0031677.pdf?sequence=1
  • Yanen, C., Dağ, M., & Aydoğmuş, E. (2022). Investigation of Thermophysical Properties of Colemanite, Ulexite, and Tincal Reinforced Polyester Composites. European Journal of Science and Technology. https://doi.org/10.31590/ejosat.1108386
  • Yang, X., Zhu, J., Yang, D., Zhang, J., Guo, Y., Zhong, X., Kong, J., & Gu, J. (2020). High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers. Composites Part B: Engineering, 185, 107784. https://doi.org/10.1016/j.compositesb.2020.107784
  • Zhang, G., Sun, Z., Duan, Y., Ma, R., & Zheng, S. (2017). Synthesis of nano-TiO 2 /diatomite composite and its photocatalytic degradation of gaseous formaldehyde. Applied Surface Science, 412, 105–112. https://doi.org/10.1016/j.apsusc.2017.03.198