TİP-3/2 TAHTAREVALLİ MEKANİZMASINDA NÖTRİNO KÜTLESİNE GELEN IŞINIMSAL DÜZELTMELER

Yakın zamanda önerilen Tip-3/2 tahterevalli mekanizması, Tip-I tahterevalliye alternatif bir modeldir. Bu yeni mekanizmada, hafif nötrino kütleleri, Higgs kütlesini bir döngüde sabit tutan bir vektör-spinör aracılığıyla indüklenir. Burada, bu makalede, bu vektör spinör aracılığıyla hafif nötrino kütlelerine yapılan ışınımsal düzeltmeler incelenmiştir. Vektör spinör kütlesi 2.8×10^12 GeV veya daha yüksek olduğu sürece, aktif nötrinoların vektör spinör döngüsünden önemsiz düzeltmeler aldığı gösterilmiştir. Bu, Tip-3/2 tahterevalli mekanizmasında aktif nötrino kütlelerini indüklemek için gereken minimum kütle değeri (M_ψ≈10^14 GeV) ve Higgs alanının doğallık kriteri (M_ψ≈10^16 GeV) ile uyumludur.

RADIATIVE CORRECTIONS TO NEUTRINO MASS IN TYPE-3/2 SEESAW MECHANISM

Recently proposed Type-3/2 seesaw mechanism is an alternative model to the Type-I seesaw. In this novel mechanism the light neutrino masses are induced via a vector-spinor, which keeps the Higgs mass stabilized at one loop. Here, in this letter, radiative corrections to the light neutrino masses via this vector spinor is studied. It is shown that the active neutrinos get trivial correction from the vector spinor loop as long as the mass of vector spinor is at the order of 2.8×10^12 GeV or higher. This is in agreement with the minimum mass value required for inducing active neutrino masses (M_ψ≈10^14 GeV) and naturalness criteria of Higgs field (M_ψ≈10^16 GeV) in Type-3/2 seesaw mechanism.

___

  • Ahriche, A., Jueid, A., and Nasri, S. (2018). "Radiative neutrino mass and Majorana dark matter within an inert Higgs doublet model". Physical Review D, Vol. 97, Issue 9, 095012.doi:10.1103/PhysRevD.97.095012.
  • Babu, K. S., and Julio, J. (2012). "Radiative Neutrino Mass Generation through Vector-like Quarks". Physical Review D, Vol. 85, 073005. doi:10.1103/PhysRevD.85.073005.
  • Balantekin, A. B., and Kayser, B. (2018). "On the Properties of Neutrinos". Annual Review of Nuclear and Particle Science, Vol. 68, 313-338. doi:10.1146/annurev-nucl-101916-123044.
  • Bonilla, C., and Valle, J.W.F. (2016). "Naturally light neutrinos in Diracon model". Physics Letters B, Vol. 762, 162-165. doi:10.1016/j.physletb.2016.09.022.
  • Cai, Y., Herrero-García, J., Schmidt, M. A., Vicente, A., and Volkas, R. R. (2017). "From the trees to the forest: A review of radiative neutrino mass models". Frontiers in Physics, Vol. 5, 63. doi:10.3389/fphy.2017.00063.
  • Calle, J., Restrepo, D., Yaguna, C. E., and Zapata, Ó. (2019). "Minimal radiative Dirac neutrino mass models". Physical Review D, Vol. 99, Issue 7, 075008. doi:10.1103/PhysRevD.99.075008.
  • Cheng, T. P., and Li, L. (1980). "Neutrino Masses, Mixings and Oscillations in SU(2) x U(1) Models of Electroweak Interactions". Physical Review D, Vol. 22, 2860. doi:10.1103/PhysRevD.22.2860.
  • Demir, D. A., Everett, L. L., and Langacker, P. (2008). "Dirac Neutrino Masses from Generalized Supersymmetry Breaking". Physical Review Letters, Vol. 100, Issue 9, 091804. doi:10.1103/PhysRevLett.100.091804.
  • Demir, D., Karahan, C., and Sargın, O. (2021). "Type-3/2 Seesaw Mechanism". Physical Review D, Vol. 104, Issue 7, 075038. doi:10.1103/PhysRevD.104.075038.
  • Demir, D., Karahan, C., Korutlu, B., and Sargın, O. (2017). "Hidden Spin-3/2 Field in the Standard Model". The European Physical Journal C, Vol. 77, 593. doi:10.1140/epjc/s10052-017-5164-3.
  • Foot, R., Lew, H., He, X. G., and Joshi, G. C. (1989). "See-saw neutrino masses induced by a triplet of leptons". Zeitschrift für Physik C Particles and Fields 44, 441-444. doi:10.1007/BF01415558.
  • Fukuda, Y., Hayakawa, T., Ichihara, E., Inoue, K., Ishihara, K., Ishino, H., … Young, K. K. (Super-Kamiokande Collaboration). (1998). "Evidence for Oscillation of Atmospheric Neutrinos". Physical Review Letters, Vol. 81, Issue 8, 1562-1567. Retrieved from https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.81.1562
  • Gell-Mann, M., Ramond, P., and Slansky, R. (1979). "Complex Spinors and Unified Theories". Conf.Proc.C 790927, 315-321.
  • Hehn, D., and Ibarra, A. (2013). "A radiative model with a naturally mild neutrino mass hierarchy". Phys. Lett. B 718, 988-991.
  • Herrero-García, J., and Schmidt, M. A. (2019). "Neutrino mass models: New classification and model-independent upper limits on their scale". The European Physical Journal C 79, 938. doi:10.1140/epjc/s10052-019-7465-1.
  • Hou, W., and Wong, G. (1994). "Radiative Majorana neutrino masses". Physics Letters B 339, 109-113.
  • Jana, S., Vishnu, P. K., and Saad, S. (2019). "Minimal dirac neutrino mass models from U(1)R gauge symmetry and left-right asymmetry at colliders". The European Physical Journal C, Vol. 79, 916. doi:10.1140/epjc/s10052-019-7441-9.
  • Klein, C., Lindner, M., and Ohmer, S. (2019). "Minimal Radiative Neutrino Masses". Journal of High Energy Physics (JHEP) 03, 018.
  • Ma, E., and Suematsu, D. (2009). "Fermion Triplet Dark Matter and Radiative Neutrino Mass". Modern Physics Letters A, Vol. 24, No. 08, 583-589.
  • Nomura, T., Okada, H., and Orikasa, Y. (2017). "Radiative neutrino mass in alternative left-right model". The European Physical Journal. C, Vol. 77, Issue 2, 103. doi:10.1140/epjc/s10052-017-4657-4.
  • Nomura, T., Okada, H., and Uesaka, Y. (2021). "A radiatively induced neutrino mass model with hidden local U(1) and LFV processes l(i)→ l(jγ), µ → eZ' and µe → ee". Journal of High Energy Physics (JHEP) 01, 016.
  • Pascalutsa, V. (2001). "Correspondence of consistent and inconsistent spin - 3/2 couplings via the equivalence theorem". Physics Letters B, Vol. 503, Issues 1–2, 85-90.
  • Pilling, T. (2005). "Symmetry of massive Rarita-Schwinger fields". International Journal of Modern Physics A, Vol. 20, No. 13, 2715-2742.
  • Rarita W., and Schwinger J. (1941). "On a Theory of Particles with Half-Integral Spin". Phys. Rev. Vol. 60, Issue 1. doi:10.1103/PhysRev.60.61.
  • Saad, S. (2019). "Simplest Radiative Dirac Neutrino Mass Models". Nucl. Phys. B, Vol. 943, 114636.
  • Sargın, O. (2020). "Fine-tuned Spin-3/2 and the Hierarchy Problem". Advances in High Energy Physics, Vol. 2020. doi:10.1155/2020/7589025.
  • Schechter, J., and Valle, J.W.F. (1980). "Neutrino Masses in SU(2) x U(1) Theories". Phys. Rev. D, Vol. 22, 2227.
  • Simirnov, A. (2003). "The MSW effect and solar neutrinos". arXiv: 0305106 [hep-ph].
  • Wang, W., and Han, Z.-L. (2017). "Naturally Small Dirac Neutrino Mass with Intermediate SU(2) L Multiplet Fields". Journal of High Energy Physics (JHEP) 04, 166. doi:10.1007/JHEP04(2017)166.
  • Yao, C.-Y., and Ding, G.-J. (2018). "Systematic analysis of Dirac neutrino masses from a dimension five operator". Phys. Rev. D, Vol. 97, Issue 9, 095042. doi:10.1103/PhysRevD.97.095042.