Evaluation of the stimulatory and inhibitory effects of Malva sylvestris leaf extract on some beneficial and pathogenic bacteria from the colon

The aim of the present study was to evaluate the stimulatory and inhibitory effects of Malva sylvestris leaf extract on some selected beneficial and pathogenic bacteria from the colon to form a presupposition on its efficacy on intestinal health. The sensitivity of colon bacterial strains to M. sylvestris leaf extract was tested by a broth dilution method in the anaerobic cabinet. Malva sylvestris leaf extract stimulated the growth of Bifidobacterium bifidum from beneficial species starting from 0.06 mg/mL dose (P<0.05). The same stimulatory effect was observed for other beneficial species Bifidobacterium infantis and Lactobacillus acidophilus from 0.125 mg/mL dose (P<0.05) and that effect was more obvious for B. infantis. On the other hand, the extract did not have any effect on Lactobacillus casei up to 4 mg/mL dose. Malva sylvestris leaf extract also had a potential inhibitory activity against pathogenic Escherichia coli, Clostridium perfringens, and Staphylococcus aureus from 0.25, 2, and 4 mg/mL concentrations respectively (P<0.05). The dose of 8 mg/mL of the extract (MIC; minimal inhibitory concentration) completely inhibited Fusobacterium nucleatum (P<0.05), other enteropathogen, which is associated with colorectal cancer. It was concluded that M. sylvestris leaf extract at 0.06-8 mg/mL dose could have favorable effects on colon bacteria since the extract selectively promoted the most of the beneficial species’ growth at this dose range while it had a potential inhibitory or inhibitory effect on pathogenic ones. Investigating the effects of M. sylvestris leaf extract on other colon bacteria and testing the in vivo effectiveness will contribute to a better understanding of its efficacy on colon microbiota and intestinal health.

___

  • Ahn, Y. J., Lee, C. O., Kweon, J. H., Ahn, J. W., & Park, J. H. (1998). Growth‐inhibitory effects of Galla Rhois‐derived tannins on intestinal bacteria. Journal of Applied Microbiology, 84(3), 439-443.
  • Al-Rubaye, A. F., Kaizal, A. F., & Hameed, I. H. (2017). Phytochemical screening of methanolic leaves extract of Malva sylvestris. International Journal of Pharmacognosy and Phytochemical Research, 9(4), 537-552.
  • Azadpour, M., Azadpour, N., Bahmani, M., Hassanzadazar, H., Rafieian-Kopaei, M., & Naghdi, N. (2016). Antimicrobial effect of ginger (Zingiber officinale) and mallow (Malva sylvestris) hydroalcholic extracts on four pathogen bacteria. Der Pharmacia Lettre, 8(1), 181-187.
  • Barros, L., Carvalho, A. M., & Ferreira, I. C. (2010). Leaves, flowers, immature fruits and leafy flowered stems of Malva sylvestris: a comparative study of the nutraceutical potential and composition. Food and Chemical Toxicology, 48(6), 1466-1472.
  • Bäumler, A. J., & Sperandio, V. (2016). Interactions between the microbiota and pathogenic bacteria in the gut. Nature, 535(7610), 85-93.
  • Benso, B., Rosalen, P. L., Alencar, S. M., & Murata, R. M. (2015). Malva sylvestris inhibits inflammatory response in oral human cells. An in vitro infection model. PLoS One, 10(10), e0140331.
  • CLSI (Clinical and Laboratory Standards Institute). (2016). M100-S26, Performance standards for antimicrobial susceptibility testing. 26th Informational Supplement, Wayne, PA: CLSI.
  • Crociani, F., Alessandrini, A., Mucci, M. M., & Biavati, B. (1994). Degradation of complex carbohydrates by Bifidobacterium spp. International Journal of Food Microbiology, 24(1-2), 199-210.
  • Das, A., Datta, S., Mukherjee, S., Bose, S., Ghosh, S., & Dhar, P. (2015). Evaluation of antioxidative, antibacterial and probiotic growth stimulatory activities of Sesamum indicum honey containing phenolic compounds and lignans. LWT - Food Science and Technology, 61, 244-250.
  • Dowek, S., Fallah, S., Basheer-Salimia, R., Jazzar, M., & Qawasmeh, A. (2020). Antibacterial, antioxidant and phytochemical screening of palestinian mallow, Malva sylvestris L. International Journal of Pharmacy and Pharmaceutical Sciences, 12(10), 12-16.
  • Dulger, B., & Gonuz, A. (2004). Antimicrobial activity of certain plants used in Turkish traditional medicine. Asian Journal of Plant Sciences, 3(1), 104-107.
  • Elsagh, M., Fartookzadeh, M. R., Kamalinejad, M., Anushiravani, M., Feizi, A., Behbahani, F. A., Rafiei, R., Arjmandpour, A., & Adibi, P. (2015). Efficacy of the Malva sylvestris L. flowers aqueous extract for functional constipation: A placebo-controlled trial. Complementary Therapies in Clinical Practice, 21(2), 105-111.
  • Fidan, H., Stefanova, G., Kostova, I., Stankov, S., Damyanova, S., Stoyanova, A., & Zheljazkov, V. D. (2019). Chemical composition and antimicrobial activity of Laurus nobilis L. essential oils from Bulgaria. Molecules, 24(4), 804.
  • Gasparetto, J. C., Martins, C. A., Hayashi, S. S., Otuky, M. F., & Pontarolo, R. (2012). Ethnobotanical and scientific aspects of Malva sylvestris L.: a millennial herbal medicine. Journal of Pharmacy and Pharmacology, 64(2), 172-189.
  • Goker, G., & Demirtas, A. (2020). Preliminary study on stimulatory and inhibitory effects of aldehydes from the green leaf volatiles family on beneficial and pathogenic bacteria from the intestine. Medycyna Weterynaryjna, 76(3), 170-175.
  • Guarner, F., & Malagelada, J. R. (2003). Gut flora in health and disease. The Lancet, 361(9356), 512-519.
  • Hamedi, A., Rezaei, H., Azarpira, N., Jafarpour, M., & Ahmadi, F. (2016). Effects of Malva sylvestris and its isolated polysaccharide on experimental ulcerative colitis in rats. Journal of Evidence-Based Complementary & Alternative Medicine, 21(1), 14-22.
  • Hobson, P. N. (1969). Rumen bacteria. In Methods in Microbiology. (pp. 133-149). London and New York: Academic Press.
  • Karawya, M. S., Balbaa, S. I., & Afifi, M. S. A. (1971). Investigation of the carbohydrate contents of certain mucilaginous plants. Planta Medica, 20(03), 14-23.
  • Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L., & Gordon, J. I. (2011). Human nutrition, the gut microbiome and the immune system. Nature, 474, 327-336.
  • Ko, H. H, Lareu, R. R., Dix, B. R., & Hughes, J. D. (2018). In vitro antibacterial effects of statins against bacterial pathogens causing skin infections. European Journal of Clinical Microbiology, 37, 1125-1135.
  • Lou, Z., Wang, H., Zhu, S., Ma, C., & Wang, Z. (2011). Antibacterial activity and mechanism of action of chlorogenic acid. Journal of Food Science, 76(6), 398-403.
  • Macfarlane, S., & Macfarlane, G. (2003). Gut flora, nutrition, immunity, and health. London, UK: Blackwell Publishing.
  • Omar, S. S., Al-Delaimy, K. S., & Abdullah, Z. A. (2006). The inhibitory effect of Jordanian selected plant extracts on growth and enterotoxin production by Clostridium perfringens. Advances in Food Sciences, 28(1), 23-38.
  • Ørskov, F., & Ørskov, I. (1992). Escherichia coli serotyping and disease in man and animals. Canadian Journal of Microbiology, 38(7), 699-704.
  • Phoem, A. N., & Voravuthikunchai, S. P. (2012). Growth stimulation/inhibition effect of medicinal plants on human intestinal microbiota. Food Science and Biotechnology, 21, 739-745.
  • Qian, W., Liu, M., Fu, Y., Zhang, J., Liu, W., Li, J., Li, X., Li, Y., & Wang, T. (2020). Antimicrobial mechanism of luteolin against Staphylococcus aureus and Listeria monocytogenes and its antibiofilm properties. Microbial Pathogenesis, 142, 104056.
  • Rajkovic, A. (2014). Microbial toxins and low level of foodborne exposure. Trends in Food Science & Technology, 38(2), 149-57.
  • Razavi, S. M., Zarrini, G., Molavi, G., & Ghasemi, G. (2011). Bioactivity of Malva sylvestris L., a medicinal plant from Iran. Iranian Journal of Basic Medical Sciences, 14(6), 574-579.
  • Shang, F. M., & Liu, H. L. (2018). Fusobacterium nucleatum and colorectal cancer: A review. World Journal of Gastrointestinal Oncology, 10(3), 71-81.
  • Shen, Q., Zhao, L., & Tuohy, K. M. (2012). High-level dietary fibre up-regulates colonic fermentation and relative abundance of saccharolytic bacteria within the human faecal microbiota in vitro. European Journal of Nutrition, 51(6), 693-705.
  • Terninko, I. I., Nemyatykh, O. D., Sakipova, Z. B., Kuldyrkaeva, E. V., & Onishschenko, U. E. (2017). Phytochemical and pharmacological vectors from Malva sylvestris L. for application in dermatological practice. Pharmaceutical Chemistry Journal, 50(12), 805-809.
  • Thapa, D., Losa, R., Zweifel, B., & Wallace, R. J. (2012). Sensitivity of pathogenic and commensal bacteria from the human colon to essential oils. Microbiology, 158, 2870-2877.
  • Uncini Manganelli, R.E., Camangi, F., & Tomei, P.E. (2001). Curing animals with plants: traditional usage in Tuscany (Italy). Journal of Ethnopharmacology, 78, 171–179.
  • Vahabi, S., Hakemi-Vala, M., & Gholami, S. (2019). In vitro antibacterial effect of hydroalcoholic extract of Lawsonia inermis, Malva sylvestris, and Boswellia serrata on Aggregatibacter actinomycetemcomitans. Advanced Biomedical Research, 8(22), 1-12.
  • Walter, C., Shinwari, Z. K., Afzal, I., & Malik, R. N. (2011). Antibacterial activity in herbal products used in Pakistan. Pakistan Journal of Botany, 43, 155-162.
  • Zare, P., Mahmoudi, R., Shadfar, S., Ehsani, A., Afrazeh, Y., Saeedan, A., Niyazpour, F., & Pourmand, B. S. (2012). Efficacy of chloroform, ethanol and water extracts of medicinal plants, Malva sylvestris and Malva neglecta on some bacterial and fungal contaminants of wound infections. Journal of Medicinal Plants Research, 6, 4550-4552.