Karayolu Tehlikeli Madde Taşımacılığı Kapsamında Tünel Güvenliği ve Risk Analizi

Karayolu ulaştırma altyapısında tüneller, coğrafi kısıtların aşılabilmesine olanak tanımaları nedeniyle büyük sosyal ve ekonomik öneme sahip özel ulaşım yapılarıdır. Kesintisiz hizmet sunan bu yapılarda güvenlik ise güncelliğini koruyan önemli bir konudur. Geçmiş kazalar, karayolu tünellerindeki güvenliğin sorgulanması gereksinimini doğurmuştur. Uluslararası düzeyde tünel güvenliğinin sağlanmasına yönelik yaklaşımlar geliştirilmeye çalışılmış, uygulamaların standartlaştırılması amaçlanmıştır. Bu çalışma kapsamında karayolu tünel güvenliğinin, en riskli tehlikeli madde taşımacılığı özelinde değerlendirilmesi amaçlanmıştır. Öncelikle dünya genelinde mevcut durum ve uluslararası mevzuat değerlendirilmiş, ülkelerin uygulamaları incelenmiştir. Ardından ülkemiz için konuya yönelik durum tespiti yapılarak olası problemler özetlenmiş, çözüm ve öneriler sunulmuştur. Çalışmada ayrıca, tünelde LPG taşımacılığı için ALOHA (Areal Locations of Hazardous Atmospheres- Tehlikeli Atmosferlerin Bölgesel Yerleri) yazılımı üzerinden örnek bir uygulama gerçekleştirilmiştir. Uygulamada, Senaryo (i): Yangın meydana gelmeden kimyasal kaçağın olduğu durum, Senaryo (ii): Kimyasal kaçağı sonrası jet yangını görüldüğü durum ve Senaryo (iii): BLEVE (Kaynayan sıvı genleşen buhar bulutu patlaması) üzerinden yangın, patlama ve toksik yayılım etkileri modellenmiştir. En geniş etki mesafeleri BLEVE sonucunda kırmızı, turuncu ve sarı tehlike bölgeleri için sırasıyla 10kW/sq m (60 saniye içinde potansiyel ölüm) =355m, 5.0kW/sq m (60 saniye içinde ikinci derece yanıklar) =502m ve 2kW/sq m (60 saniye içinde acı) =781m olarak belirlenmiştir. Ücretsiz bir yazılım olan ALOHA’nın, karayolu tehlikeli madde taşımacılığı uygulayıcı ve denetleyicileri için pratik olarak kullanılabileceği gösterilmiştir. Tehlikeli maddelerin tünellerden geçişi, önceden senaryolar üzerinden modellenerek uygun yol güzergâhı belirlenebilir. Böylece, tehlikeli madde taşımacılığında zaman kaybı ve maddi giderler bertaraf edilebilecektir.

___

  • Benekos, I. and Diamantidis, D. (2017). On Risk Assessment and Risk Acceptance of Dangerous Goods Transportation through Road Tunnels in Greece. Safety Science, 91, 1-10.
  • Bing, Z., Chuan-sheng, W., Fang-liang, L. and Er-jue, W.(2020). Whole Risk Assessment System and Management System of Urban Road Tunnel Operation Stage. Journal of Highway and Transportation Research and Development (English Edition), 14,1.
  • Bontempi, F. and Gkoumas, K. (2016). Risk Analysis for Severe Traffic Accidents in Road Tunnels. Int. J. Forensic Engineering, 3(1/2): 106-126.
  • Caliendo, C. and De Guglielmo, M.L (2016). Quantitative Risk Analysis on the Transport of Dangerous Goods Through a Bi‐Directional Road Tunnel. Risk Analysis, 37(1): 116-129.
  • Caliendo, C. and De Guglielmo, M.L. (2017). Simplified Method for Risk Evaluation in Unidirectional Road Tunnels Related to Dangerous Goods Vehicles. International Journal of Civil Engineering and Technology (IJCIET),8(6): 960-968.
  • Chen, S., Xia, Y., Ma, F. and Liao, H. (2020). Research on Assessment of Highway Tunnel Operating Safety. IOP Conf. Series: Materials Science and Engineering, 741, 012069.
  • EC, (2004). Directive on Minimum Safety Requirements for Tunnels in the Trans-European Road Network, Official Journal of the European Union, L 167 (30.04.2004). EuroStat, Dangerous Goods Transportation Statistics, (2017).
  • İnternet: Emergency Response Guidebook, 2016 https://www.phmsa.dot.gov/sites/phmsa.dot.gov/files/docs/ERG2016.pdf (05.02.2020).
  • Kaçan, Ö. (2018). Karayolu Tünellerinde Tehlikeli Madde Taşımacılığı Risk Analizi. Karayolları Bülteni, 594: 26-31.
  • Kirytopoulos, K., Papadopoulos, G., Rentizelas, A. and Tatsiopoulos, I. (2010). Quantitative Risk Analysis for Road Tunnels Complying with EU Regulation. Journal of Risk Research, 13(8): 1027-1041.
  • Knoflacher, H., Nussbaumer, H. and Pfaffenbichler, P. C. (2002). Quantitative Risk Assessment of Heavy Goods Vehicle Transport through Tunnels - the Tauern tunnel Case Study. 1st International Conference "Tunnel Safety and Ventilation",181-188.
  • Li, Y., Xu, D. and Shuai J.(2020). Real-time risk analysis of road tanker containing flammable liquid based on fuzzy Bayesian network. Process Safety and Environmental Protection, 134, 36-46.
  • OECD & PIARC, (2001). Safety in Tunnels: Transport of Dangerous Goods Through Road Tunnels, France.
  • PIARC, (2008). Risk Analysis for Road Tunnels, World Road Association (PIARC), France.
  • PIARC, (2012). Current Practice for Risk Evaluation for Road Tunnels, World Road Association (PIARC), France.
  • Türkmen, A., Özçınar, B., Aydoğdu, G. and Özbiltekin, T.M. (2019). A Framework of Route Selection for Hazardous Goods Transportation in Tunnels. Proceedings of the International Symposium for Production Research, 621-635.
  • UNECE, (2008). General Guideline for the Calculation of Risks in the Transport of Dangerous Goods by Road.
  • United Nations, (2012), ADR “European Agreement Concerning the International Carriage of Dangerous Goods by Road, New York, Geneva.
  • Xia Y., Ma, F., Liao H. and Liao Z.(2020). Study on Features of Hazardous Goods Transport Accidents on Highway. IOP Conf. Series: Materials Science and Engineering, 741, 012071.