Recent advances in solar drying technologies: A Comprehensive review

Recent advances in solar drying technologies: A Comprehensive review

Preservation of food and vegetable products is an age-old practice for the retention of flavor, appearance, and quality. From ancient times, driers for drying food grains work on direct sun rays, firewood, fossil fuels, and coals causing carbon release. These available methods are expensive, unreliable, and unhygienic; thereby the use of a solar dryer working on free and clean energy is better for higher value addition to food preservation. The objective of this exploration is to study the recent developments in the use of different types of solar dryers for drying foods, vegetables, seafood, etc. There exist many studies on the effects of the parameters such as temperature, relative humidity, and speed of air, turbulence effect, sun irradiation, and the latitude of the location in the solar drying process. The findings show that the climate conditions such as solar radiation and atmospheric air play an important role in the drying efficiency of the solar dryer. A phase change material stores thermal energy during the daytime and releases heat during the nighttime. This process improves thermal efficiency and reduces heat loss during the drying period. On the one hand, a hybrid dryer integrated with a solar panel produces electricity for the operation of a DC blower circulating hot air inside the drying chamber for better drying. In addition, a critical review has been performed on the usage of different absorbing plates increasing heat transfer rate, use of various phase change materials for heat storage, and analysis of CFD simulation.

___

  • [1] Sandali, M, Boubekri, A., Mennouche, D. Improvement of the thermal performance of solar drying systems using different techniques: a review. Journal of Solar Energy Engineering, 2019; 141(5): 01-11. DOI: https://doi.org/10.1115/1.4043613.
  • [2] Rabha, D, K, Muthukumar, P, Somayaji, C. Energy and exergy analyses of the solar drying processes of ghost chili pepper and ginger. Renewable Energy 2017; 105: 764-773. DOI:10.1016/j.renene.2017.01.007.
  • [3] Chauhan, P, S, Kumar, A, Nuntadusit, C. Heat transfer analysis of PV integrated modified greenhouse dryer. Renewable Energy 2017; 121:53-65. DOI: 10.1016/j.renene.2018.01.017.
  • [4] Heydari, A, Forati, M, Khatam, S. M. Thermal performance investigation of a hybrid solar air heater applied in a solar dryer using thermodynamic modeling. Journal of Thermal Engineering 2020; 79:715-730.
  • [5] Elkhadraoui, A, Kooli, S, Hamdi, I, Farhat, A. Experimental investigation and economic evaluation of a new mixed mode solar greenhouse dryer for drying of red pepper and grape. Renewable Energy 2015; 77:01-08. DOI: 10.1016/j.renene.2014.11.090.
  • [6] Zoukit, A, El, Ferouali, H, Salhi, I, Doubabi, S, Abdenouri, N. Mathematical modeling of an innovative hybrid solar-gas dryer. Journal of Energy Systems 2018; 2: 260-276. DOI: 10.30521/jes.457647.
  • [7] Suresh, M, Palanisamy, P, Senthil, K.K. Drying of mint leaves in forced convection solar dryer. Thermal Science 2019; 23: 3941-3949. DOI: 10.2298/TSCI171230303S.
  • [8] Reddy, V.S. Portable solar drying system with inbuilt PV module for standalone forced convection operation. Journal of Thermal Engineering 2020; 6: 92-98. DOI: 10.18186/thermal.728035.
  • [9] Cano, L, Verdugo, A, Gutierrez, L, Rivas, U. Evaluation of the maximum evaporation rate in small-scale indirect solar dryers. Journal of Solar Energy Engineering 2016; 13: 1-6. DOI: 10.1115/1.4032351.
  • [10] Sebaii, A.A, EI, Shalaby, S.M. Experimental investigation of drying thymus cut leaves in indirect solar dryer with phase change material. Journal of Solar Energy Engineering 2017; 139:1-7. DOI: 10.1115/1.4037816.
  • [11] Padmanaban, G., Ponnusamy, P.K., Murugesan, M. Performance of a desiccant assisted packed bed passive solar dryer for copra processing. Thermal Science 2017; 21: 419-426. DOI: 10.2298/TSCI17S2419P.
  • [12] Tedesco, F, Biilhler, A, J, Wortmann, S. Design, construction and analysis of a passive indirect solar dryer with chimney. Journal of Solar Energy Engineering 2019; 141:01-09. DOI: 10.1115/1.4041931.
  • [13] Haytem, M, Bahammou, Y, Tagnamas, Z, Kouhila, M, Lamharrar, A, Idlimam, A. Application of solar drying on the apple peels using an indirect hybrid solar-electrical forced convection dryer. Renewable Energy 2021; 168:131-140. DOI:10.1016/j.renene.2020.12.046.
  • [14] Mugi, V.R., Chandramohan, V.P. Energy, exergy and economic analysis of an indirect type solar dryer using green chilli: A comparative assessment of forced and natural convection. Thermal Science and Engineering Progress 2021; 24: 01-13.
  • [15] Tarigan, E. Mathematical modeling and simulation of a solar agricultural dryer with back-up biomass burner and thermal storage. Case Studies in Thermal Engineering 2018; 12:149-165. DOI: 10.1016/j.csite.2018.04.012.
  • [16] Sonthikun, S, Chairat, P, Fardsin, K, Kirirat, P, Kumar, A, Tekasakul, P. Computational fluid dynamic analysis of innovative design of solar biomass hybrid dryer: An experimental validation. Renewable Energy 2016; 92: 185-191.DOI: 10.1016/j.renene.2016.01.095.
  • [17] Yadav, S, Chandramohan, V, P. Numerical analysis on thermal energy storage device with finned copper tube for an indirect type solar drying system. Journal of Solar Energy Engineering 2018; 140:1-13.
  • [18] Erdem, Ç, Khanlari, A, Sözen, A, Aytaç, İ, Tuncer, A, D. Energy and exergy analysis of a photovoltaic thermal (PVT) system used in solar dryer: A numerical and experimental investigation. Renewable Energy 2021; 180:410-423. DOI: 10.1016/j.renene.2021.08.081.
  • [19] Matavel, CE, Hoffmann, H, Rybak, C, Hafner, JM, Salavessa, J, Eshetu, S, B, Sieber, S. Experimental evaluation of a passive indirect solar dryer for agricultural products in Central Mozambique. Journal of Food Processing and Preservation 2021; 45: 01-11, DOI:10.1111/jfpp.15975.
  • [20] Koua, BK, Paul, MEK, Prosper, G. Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans. Journal of the Saudi Society of Agricultural Sciences 2019; 18: 72-82. DOI: 10.1016/j.jssas.2017.01.002.
  • [21] Asnaz, MSK, Ayse, OD. Comparative performance study of different types of solar dryers towards sustainable agriculture. Energy Reports 2021; 7:6107-6118. DOI: 10.1016/j.egyr.2021.08.193.
  • [22] Simo, TM, Macmanus, CN, André, ZLB, Fatima, K, S. Numerical analysis and validation of a natural convection mix-mode solar dryer for drying red chilli under variable conditions. Renewable Energy 2020; 151: 659-673. DOI: 10.1016/j.renene.2019.11.055.
  • [23] Mewa, EA, Michael, WO, Catherine, NK, Musa, NR. Experimental evaluation of beef drying kinetics in a solar tunnel dryer. Renewable Energy 2019; 139:235-241. DOI: 10.1016/j.renene.2019.02.067.
  • [24] Zoukit, A, Ferouali, HEl, Salhi, I, Doubabi, S, Abdenouri, N. Takagi Sugeno fuzzy modeling applied to an indirect solar dryer operated in both natural and forced convection. Renewable Energy 2019; 133:849-860. DOI: 10.1016/j.renene.2018.10.082.
  • [25] Hamdi, I, Sami, K, Aymen, E, Zaineb, A, Fadhel, A, Amenallah, G. Experimental study and numerical modeling for drying grapes under solar greenhouse. Renewable Energy 2018; 127:936-946. DOI: 10.1016/j.renene.2018.05.027.
  • [26] Poblete, R, Ernesto, C, Juan, M, José, B. Factors influencing solar drying performance of the red algae Gracilaria chilensis. Renewable Energy 2018; 126:978-986. DOI:10.1016/j.renene.2018.04.042.
  • [27] Hadi, SA, Akbar, A. Accelerating drying process of tomato slices in a PV-assisted solar dryer using a sun tracking system, Renewable Energy 2018; 123:428-438. DOI: 10.1016/j.renene.2018.02.056.
  • [28] Chandrasekar, M, Senthilkumar, T, Kumaragurubaran, B, Fernandes, J, P. Experimental investigation on a solar dryer integrated with condenser unit of split air conditioner (A/C) for enhancing drying rate. Renewable Energy 2018; 122: 375-381. DOI: 10.1016/j.renene.2018.01.109.
  • [29] Amer, B.M.A., Klaus, GM. Hossain, A. Integrated hybrid solar drying system and its drying kinetics of chamomile. Renewable Energy 2018; 121: 539-547. DOI: 10.1016/j.renene.2018.01.055.
  • [30] Singh, CP, Kumar, A, Nuntadusit, C, Anout, BJ. Thermal modeling and drying kinetics of bitter gourd flakes drying in modified greenhouse dryer. Renewable Energy 2018; 118: 799-813. DOI: 10.1016/j.renene.2017.11.069.
  • [31] Eltawil, MA, Mostafa, MA, Abdulrahman, OA. Solar PV powered mixed-mode tunnel dryer for drying potato chips. Renewable Energy 2018; 116: 594-605. DOI: 10.1016/j.renene.2017.10.007.
  • [32] Deeto, SS, Thepa, VM, Songprakorp, R. The experimental new hybrid solar dryer and hot water storage system of thin layer coffee bean dehumidification. Renewable Energy 2018; 115:954-968. DOI: 10.1016/j.renene.2017.09.009.
  • [33] Natarajan, K, Singh, ST, Verma, TN, Nashine, P. Convective solar drying of vitis vinifera & momordica charantia using thermal storage materials. Renewable Energy 2017; 113:1193-1200. DOI: 10.1016/j.renene.2017.06.096.
  • [34] Yahya, M, Ahmad, F, Kamaruzzaman, S. Energy and exergy analyses of solar-assisted fluidized bed drying integrated with biomass furnace. Renewable Energy 2017; 105: 22-29. DOI:10.1016/j.renene.2016.12.049.
  • [35] Morad, MM, El-Shazly, MA, Wasfy, KI, El- Maghawry, H.A.M. Thermal analysis and performance evaluation of a solar tunnel greenhouse dryer for drying peppermint plants. Renewable Energy 2017; 101:992-1004. DOI:10.1016/j.renene.2016.09.042.
  • [36] Roonak, D, Shafieian, A. An experimental study of a heat pipe evacuated tube solar dryer with heat recovery system. Renewable Energy 2016; 96: 872-880. DOI: 10.1016/j.renene.2016.05.025.
  • [37] Nabnean, SS, Thepa, JS, Sudaprasert, K, Songprakorp, R, Bala, BK. Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes. Renewable Energy 2016; 94:147-156. DOI: 10.1016/j.renene.2016.03.013.
  • [38] Dina, SF, Himsar, A, Farel, HN, Hideki, K. Study on effectiveness of continuous solar dryer integrated with desiccant thermal storage for drying cocoa beans, Case Studies in Thermal Engineering 2015; 5:32-40. DOI:10.1016/j.csite.2014.11.003.
  • [39] Mathew, AA, Venugopal, T. A novel thermal energy storage integrated evacuated tube heat pipe solar dryer for agricultural products: Performance and economic evaluation. Renewable Energy 2021; 179: 1674-1693. DOI: 10.1016/j.renene.2021.07.029.
  • [40] Khouya, A., Draoui, A. Computational drying model for solar kiln with latent heat energy storage: Case studies of thermal application. Renewable Energy 2019; 130: 796-813. DOI: 10.1016/j.renene.2018.06.090.
  • [41] Madhankumar, S, Karthickeyan, V, Wei, W. Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material. Renewable Energy 2021; 176: 280-294. DOI: 10.1016/j.renene.2021.05.085.
  • [42] Lakshmi, DVN, Muthukumar, P, Layek, A, Nayak, PK. Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage. Reneweble Energy 2018; 120:23-34. DOI: 10.1016/j.renene.2017.12.053.
  • [43] Ndukwu, MC, Bennamoun, L, Abam, FI, Eke, AB, Ukoha, D. Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium. Renewable Energy 2017; 113:1182-1192. DOI:10.1016/j.renene.2017.06.097.
  • [44] Kareem, MW, Habib, K, Ruslan, MH, Saha, BB. Thermal performance study of a multi-pass solar air heating collector system for drying of Roselle (Hibiscus sabdariffa). Renewable Energy 2017; 113:281-292. DOI: 10.1016/j.renene.2016.12.099.
  • [45] Behera, DD, Mohanty, RC, Mohanty, AM. Performance evaluation of hybrid solar dryer for drying food products. International Journal of Advanced Science and Technology 2020; 29: 7788-7800.
  • [46] Nabnean, S, Nimnuan, P. Experimental performance of direct forced convection household solar dryer for drying banana. Case Studies in Thermal Engineering 2020; 22: 1-6. DOI: 10.1016/j.csite.2020.100787.
  • [47] Erick, CLV, Lilia, CMA, Octavio, GV, Isaac, PF, Rogelio, BO. Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum). Renewable Energy 2020; 147: 845-855. DOI: 10.1016/j.renene.2019.09.018.
  • [48] Sivakumar, S, Velmurugan, C, Dhas, DSEJ, Solomon, AB, Wins LD, K. Effect of nano cupric oxide coating on the forced convection performance of a mixed-mode flat plate solar dryer. Renewable Energy 2020; 155:1165-1172. DOI: 10.1016/j.renene.2020.04.027.
  • [49] Wang, W, Li, M, Hassanien, R, Hassanien, E, Wang, Y, Yang, L. Thermal performance of indirect forced convection solar dryer and kinetics analysis of mango. Applied Thermal Engineering 2018; 134: 310-321. DOI: 10.1016/j.applthermaleng.2018.01.115.
  • [50] Shamekhi, AS, Gorji, TB, Gorji-Bandpy, M, Jahanshahi, M. Drying behaviour of lemon balm leaves in an indirect double-pass packed bed forced convection solar dryer system. Case studies in thermal engineering 2018; 12: 677-686. DOI: 10.1016/j.csite.2018.08.007.
  • [51] Kabeel, AE, Khalil, A, Shalaby, SM, Zayed, ME. Improvement of thermal performance of the finned plate solar air heater by using latent heat thermal storage. Applied Thermal Engineering 2017; 123:546-553. DOI: 10.1016/j.applthermaleng.2017.05.126.
  • [52] Moradi, R, Kianifar, A., Wongwises, S. Optimization of a solar air heater with phase change materials: Experimental and numerical study. Experimental Thermal and Fluid Science 2017; 89:41-49. DOI: 10.1016/j.expthermflusci.2017.07.011.
  • [53] Ghiami, A, Ghiami, S. Comparative study based on energy and exergy analyses of a baffled solar air heater with latent storage collector. Applied Thermal Engineering 2018; 133: 797-808. DOI: 10.1016/j.applthermaleng.2017.11.111.
  • [54] Arkian, AH, Najafi, G, Gorjian, S, Loni, R, Bellos, E, Yusaf, T. Performance assessment of a solar dryer system using small parabolic dish and alumina/oil nano fluid: Simulation and experimental study. Energies 2019; 12: 01-22.
  • [55] César, LVE, César, MAL, Octavio, GV, Isaac, PF, Rogelio, BO. Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum). Renewable Energy 2020; 147: 845-855. DOI: 10.1016/j.renene.2019.09.018.
  • [56] Hadi, SA, Arabhosseini, A. Accelerating drying process of tomato slices in a PV-assisted solar dryer using a sun tracking system. Renewable Energy 2018; 123:428-438, DOI: 10.1016/j.renene.2018.02.056.
  • [57] Zaredar, A, Effatnejad, R, Behnam, B. Construction of an indirect solar dryer with a photovoltaic system and optimised speed control. IET Renewable Power Generation 2018; 12: 1807-1812.
  • [58] Behera, DD, Nayak, B, Das, SS. Design and Fabrication of Solar Dryer for Sustainable Livelihoods of Fisher Women. International Journal of Engineering and Management Research (IJEMR) 2017; 7: 125-139.
  • [59] Behera, DD, Mohanty, AM, Das, SS. Design and fabrication of Forced Convection Cabinet type of solar dryer for drying fruits and vegetables. International Journal of Management, Technology and Engineering 2019; 9: 4419-4431.
  • [60] Shoeibi, S, Hadi, K., Mirjalily, SAA, Zargarazad, M. Performance analysis of finned photovoltaic/thermal solar air dryer with using a compound parabolic concentrator. Applied Energy 2021; 304:01-11.DOI: 10.1016/j.apenergy.2021.117778.
  • [61] Prakash, O, Kumar, A. Performance evaluation of greenhouse dryer with opaque north wall. Heat and Mass Transfer 2014; 50: 493-500.
  • [62] Agarwal, A, Sarviya, RM. An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material. Engineering Science and Technology, an International Journal 2016; 19: 619-631. DOI:10.1016/j.jestch.2015.09.014.
  • [63] Kuan, M, Shakir, Y, Mohanraj, M, Belyayev, Y, Jayaraj, S, Kaltayev, A. Numerical simulation of a heat pump assisted solar dryer for continental climates. Renewable Energy 2019; 143: 214-225.
  • [64] Zoukit, A, Ferouali, HEI, Salhi, I, Doubabi, S, Abdenouri, N. Takagi Sugeno fuzzy modeling applied to an indirect solar dryer operated in both natural and forced convection. Renewable Energy 2019; 133: 849-860.
  • [65] Kishk, SS, Ramadan, AE, Gamal, MEIM. Effectiveness of recyclable aluminum cans in fabricating an efficient solar collector for drying agricultural products, Renewable Energy 2019; 133: 307-316. DOI:10.1016/j.renene.2018.10.028.
  • [66] Karthikeyan, AK, Murugavelh, S. Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed mode forced convection solar tunnel dryer, Renewable Energy 2018; 128: 305-312. DOI:10.1016/j.renene.2018.05.061.
  • [67] Abubakar, S, Umaru, S, Kaisan, M, U, Umar, U, A, Ashok, B, Nanthagopal, K. Development and performance comparison of mixed-mode solar crop dryers with and without thermal storage. Renewable Energy 2018; 128: 285-298.
  • [68] Hao, W, Liu, S, Mi, B, Lai, Y. Mathematical modelling and performance analysis of a new hybrid solar dryer of lemon slices for controlling drying temperature. Energies 2020; 13: 01-23.
  • [69] Nabnean, S, Nimnuan, P. Experimental performance of direct forced convection household solar dryer for drying banana. Case Studies in Thermal Engineering 2020; 22: 01-11. DOI:10.1016/j.csite.2020.100787.
  • [70] Musembi, MN, Kiptoo, KS, Yuichi, N. Design and analysis of solar dryer for mid-latitude region, Energy Procedia 2016; 98-110. DOI:10.1016/j.egypro.2016.10.145.
  • [71] Kouhila, M, Moussaoui, H, Lamsyehe, H, Tagnamas, Z, Bahammou, Y, Idlimam, Lamharrar, A, Drying characteristics and kinetics solar drying of mediterranean mussel (mytilus galloprovincilis) type under forced convection. Renewable Energy 2020; 147:833-844.
  • [72] Vásquez, J, Reyes, A, Pailahueque, N. Modelling, simulation and experimental validation of a solar dryer for agro-products with thermal energy storage system, Renewable Energy 2019;139: 1375-1390.
  • [73] Sandali, M, Boubekri, A, Mennouche, D, Gherraf, N. Improvement of a direct solar dryer performance using a geothermal water heat exchanger as supplementary energetic supply. An experimental investigation and simulation study. Renewable Energy 2019; 135:186-196. DOI: 10.1016/j.renene.2018.11.086.
  • [74] Udomkun, P, Romuli, S, Schock, S, Mahayothee, B, Sartas, M, Wossen, T, Njukwe, E, Vanlauwe, B, Müller, J. Review of solar dryers for agricultural products in Asia and Africa: An innovation approach. Journal of Environmental Management Landscape 2020; 268: 01-14. DOI:10.1016/j.jenvman.2020.110730.
  • [75] Singh, R, Salhan, P, Kumar, A. CFD Modeling and simulation of an indirect forced convection solar dryer. IOP Conference Series: Earth and Environmental Science 2021; 795: 01-09.