İnsansız Hava Aracında, Ataletsel Navigasyon Sistemine ait Yapısal Yerleşim Tasarımlarının Frekans Cevap Analizi ve Modal Test Metodları ile değerlendirilmesi

Ataletsel Navigasyon Sistemleri, üzerinde bulundukları platformun konumunu ve ivmesini ölçmek için kullanılan hassas sistemlerdir. Oynadıkları kritik rol sebebiyle ölçmekte oldukları verinin doğruluğu önem arz etmektedir. Bu sistemlerin platform ile bağlantısı, yaptıkları ölçümün hassasiyetini birebir etkileyebilmektedir. Bu makalede, taktik sınıf bir İnsansız Hava Aracı için Navigasyon Sistemi yapısal yerleşimi hakkında örnek bir çalışma sunulmuştur. Alternatif yerleşim tasarımlarının mekanik davranışları, sonlu elemanlar ile modellenerek analiz edilmiş; modal test teknikleri ile incelenerek uygun tasarım çözümüne ulaşılmıştır.

Evaluation of Structural Behaviour of INS Device Installation Design on Unmanned Aerial Vehicle Using Finite Element Method and Modal Testing

Inertial navigation systems are precise devices that are used to measure the orientation and accelerations of a platform they are integrated. Accuracy of the measured data is essential due to the critical role of these systems. The way that these devices are integrated to platform, directly affects the measured data accuracy. In this paper, a case study of alternative designs for Navigation device integration on a Tactical Unmanned Aerial Vehicle is presented. Mechanical behavior of the given alternative designs are evaluated with Finite Element Analyses and Modal Testing, hence the appropriate design is selected.

___

  • Baker, A., Dutton, S., & Kelly, D. (2004). Composite Materials for Aircraft Structures - 2nd ed. Virginia: American Institute of Aeronautics and Astronautics.
  • Ersoy, K. (2017). Operational Modal Analysis in Helicopter Structures Containing Harmonic Excitations. AIAC. Ankara.
  • Inertial Reference System (IRS). (2020). Retrieved from skybrary.aero: https://www.skybrary.aero/index.php/Inertial_Reference_System_(IRS)
  • Irvine, M. (1986). Structural Dynamics for the Practising Engineer. Oxon: Taylor & Francis.
  • Kurowski, P. M. (2004). Finite Element Analysis for Design Engineers. Warrendale,PA: SAE International.
  • Özgüven, H. N. (1990). Structural Modifications Using Frequency Response Functions. Mechanical Systems and Signal Processing, 53-63.
  • Park, Y.-H., & Park, Y.-S. (2000). Structural Optimization to Enhance Its Natural Frequencies Based on Measured Frequency Response Functions. Journal of Sound and Vibration, 1235-1255.
  • Rivin, E. I. (2003). Passive Vibration Isolation. New York: ASME Press.
  • Schmitz, T. L., & Smith, K. S. (2019). Machining Dynamics - Frequency Response to Improved Productivity 2nd Ed. Charlotte.
  • Schwarz, Brian J.; Richardson, Mark H.;. (1999). Experimental Modal Analysis. CSI Reliability Week. Orlando.
  • Taylor, J. I. (2003). The Vibration Analysis Handbook.
  • van der Poel, G. W. (2010). An Exploration of Active Hard Mount Vibration Isolation for Precision Equipment.
  • Woodman, O. J. (2007). An introduction to inertial navigation. University of Cambridge.