Dronlar ve İnsansız Hava Araçlarında (UAV) Kullanılan Mikro Turbojet Motorunun Genel Havacılık ve Termodinamik Performans Analizi

Farklı çalışma modları (Mode-1,-2,-3,-4) için Dronlar ve UAV’lerde kullanılan bir mikro turbojet motorunun (MTJE) ve motorun alt sistemlerinin genel havacılık, enerji ve ekserji performans analizleri detaylı bir şekilde yapılmıştır. Bu çalışmada kullanılan performans ölçütleri; sistem performans seviyesinin ölçülmesine, sistem ve alt sistemlerinin geliştirilmesine yardımcı olacaktır. Sonuçlar; askeri motorların, özellikle turbojet motorlarının, maksimum çalışma/kalkış modunda en verimli olacak şekilde tasarlanmış olduğundan MTJE’nin en iyi performans değerlerine maksimum çalışma modunda (Mode-4) sahip olduğunu göstermektedir. MTJE motoru Mode-4 çalışma modunda; %18,08 ile maksimum ekserji verimine ve %19,19 ile maksimum enerji verimine sahiptir. Komponentler arasında yanma odası; tüm çalışma modları için en düşük ekserji verimlerine ve sürdürülebilir verim faktörlerine, en yüksek ekserji yıkım akışlarına, ekserji iyileştirme potansiyeli akışlarına, yakıt ekserjisi atık oranlarına ve üretebilirlik kayıp oranlarına sahiptir. Ekserji performans parametreleri dikkate alındığında, açık arayla sistem için kötü faktöryanma odasıdır. Bu nedenle, tüm ekserji performans göstergeleri; sistem sahiplerinin ve araştırmacıların kompresör ve yanma odası komponentlerinin ekserji verim değerlerini iyileştirmek amacıyla bu komponentler üzerinde odaklanmaları gerektiğini göstermektedir.

General Aviation and Thermodynamic Performance Analyses of a Micro Turbojet Engine Used on Drones and Unmanned Aerial Vehicles (UAV)

The general aviation, energetic and exergetic performance analyses of a micro turbojet engine (MTJE) used on drones and UAVs and its major subcomponents are made for different operation modes (Mode-1,-2,-3,-4) in detail. Used performance metrics in this study help to measure the system performance level and to develop the system and its subsystems. The results indicate that the MTJE has the best performance values at the maximum operation modes (Mode-4) because the military engines, especially turbojet engine, are designed to be the most efficient in the maximum operation/take-off modes. The MTJE has the maximum energy efficiency via 19.190% at Mode-4 when it has the maximum exergy efficiency by 18.079% at Mode- 4, respectively. Between the components, the combustion chamber has the lowest exergy efficiency values, the lowest sustainable efficiency factors, the highest exergy destruction rates, the highest exergetic improvement potential rates, the highest fuel exergy waste ratios and the highest productivity lack ratios for all operation modes. When the exergetic performance parameters are taken into consideration, the bad factor for the system is the combustion chamber by far. Therefore, all exergetic performance indicators show that the system owners and researchers focus on the components of the compressor and combustion chamber to improve the exergetic efficiency values of these components.

___

  • Acıkgoz B., Celik C., Soyhan H.S., Gokalp B., Karabag B. (2015). Emission characteristics of an hydrogen–CH4 fuelled spark ignition engine. Fuel, 159, 298-307.
  • Aydın H, Turan O, Karakoc TH, Midilli A. (2013). Exergo-sustainability indicators of a turboprop aircraft for the phases of a flight. Energy, 58, 550-560.
  • Baharozu E., Soykan G., Ozerdem M.B. (2017). Future aircraft concept in terms of energy efficiency and environmental factors. Energy, 140, 1368-1377.
  • Balli O. (2017a). Advanced exergy analysis of a turbofan engine (TFE): Splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous. International Journal of Turbo&Jet Engines. ISSN (Online) 2191-0332. ISSN (Print) 0334-0082. DOI:https://doi.org/10.1515/tjj-2016-0074
  • Balli O. (2017b). Advanced exergy analyses of an aircraft turboprop engine (TPE). Energy, 124, 599-612.
  • Balli O. (2017c). Advanced exergy analyses to evaluate the performance of a military aircraft turbojet engine (TJE) with afterburner: Splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous. Applied Thermal Engineering, 111, 152-169.
  • Balli O. (2017d).Exergy modeling for evaluating sustainability level of a high by-pass turbofan engine used on commercial aircrafts. Applied Thermal Engineering, 123,138-155.
  • Balli O. (2019). A Parametric Study of Hydrogen Fuel Effects on Exergetic, Exergoeconomic and Exergoenvironmental Cost Performances of an Aircraft Turbojet Engine. International Journal of Turbo and Jet Engines, https://doi.org/10.1515/tjj-2019-0043
  • Balli O., Hepbasli A. (2013). Energetic and exergetic analyses of T56 turboprop engine. Energy Conversion and Management, 73, 106-120.
  • Balli O., Hepbasli A. (2014). Exergetic, exergoeconomic, environmental and sustainability analyses of T56 turboprop engine. Energy, 64, 582-600.
  • Balli O., Sohret Y., Karakoc H.T. (2018). The effects of hydrogen fuel usage on the exergetic performance of a turbojet engine. International Journal of Hydrogen Energy, 43, 10848-10858.
  • Coban K., Colpan C.O., Karakoc T.H. (2017). Application of thermodynamic laws on a military helicopter engine. Energy, 140, 1427-1436.
  • Daly M., Bill Gunston. (1996). Jane’s Aero-Engines. ISBN: 0710614055. Jane’s Information Group Limited. Sential House. 163. Brighton Road. Coulsdon. Surrey CR5 2NH. Printed Pear Tree Image Processing. Stevenage. Herts. UK.
  • El-Sayed AF. (2008). Aircraft propulsion and gas turbine engines. CRC Press.
  • Koch C, Cziesla F, Tsatsaronis G. (2007). Optimization of combined cycle power plants using evolutionary algorithms. Chemical Engineering Process, 46, 1151–1159.
  • Letnik T., Marksel M., Luppino G., a Bardi A., Bozicnik S. (2018). Review of policies and measures for sustainable and energy efficient urban transport. Energy, 163, 245-257.
  • Marsh P.D. (2013). Twenty years of micro-turbojet engines. RC Universe. Accesses: 24 April-2020. http://www.rcuniverse.com/articles/uncategorized/twenty-years-of-micro-turbojet-engines/
  • Rakopoulos C.D, Giakoumis E.G. (2006). Second-law analyses applied to internal combustion engines operations. Progress Energy Combustion Science, 32, 2-47.
  • Ranasinghe K., Guan K., Gardi A., Sabatini R. (2019). Review of advanced low-emission technologies for sustainable aviation. Energy, 188, 115945.
  • Saravanamutto H. I. H., Rogers G. F.C., Cohen H., Strazincky, P.V. (2009). Gas Turbine Theory, 6th ed., Pearson Education Limited, ISBN: 978-0-13-222437-6
  • Sohret Y., Kıncay O., Karakoc T.H.(2015). Combustion efficiency analysis and key emission parameters of a turboprop engine at various loads. Journal of the Energy Institute, 88, 490-499.
  • Yanga J., Xinb Z., Hea Q.(S), Corscaddenc K., Niua H. (2019). An overview on performance characteristics of bio-jet fuels. Fuel, 237, 916–936
  • Yılmaz I. (2017). Emissions from passenger aircraft at Kayseri Airport, Turkey. Journal of Air Transport Management, 58, 176-182.
  • Yuksel B., Balli O., Gunerhan H., Hepbasli A. (2020). Comparative Performance Metric Assessment of A Military Turbojet Engine Utilizing Hydrogen And Kerosene Fuels Through Advanced Exergy Analysis Method. Energies, 13, 1205.