Utilization of Trapa natans

In this study, Trapa natans nut collected from the costs of Inkumu-Bartin was analyzed according to its lignin content. Acid-insoluble lignin content was determined according to TAPPI T222om-02 as 28.31%. TGA and FTIR analyses were performed. FTIR analysis indicated that Trapa natans contained cellulose, hemicelluloses and lignin. The peaks at 1506-1510 cm-1 in both samples are characteristic peaks for the lignin components due to C = O and COO-non-symmetric stretching vibrations in the aromatic rings of the lignin structure. 1510 cm-s peak is found in the literature as lignin’s fingerprint peak.  The peaks at 1230-1270 cm-1 band show the vibrations of guayasil ring with CO tension in lignin and hemicelluloses. Around the peaks of 900, 1025, 1030 and 1050 cm-1 bands cellulose’s O-H, C-H and C-O-C type bonds are seen. When TGA analyzes are examined, approximately 4.5% of the sample is lost from 30 °C to 200 °C. At these intervals, samples generally lose volatile constituents and moisture. From 200 to 271 °C 4.6% of the weight is lost. The decrease in this range may be due to the decomposition of cellulose and hemicelluloses. The DTG curve shows maxima weight-loss occurring at 349 °C. The weight-loss in the range from 271-352 °C is about 50%. Pure lignin sample’s TGA and DTG curve results show 10%, 50%, and 70% weight-losses at 233 °C, 489 °C, and 1167 °C respectively. According to these results, dominantly lignin and small quantities of cellulose and hemicelluloses are present in trapa samples. 

___

  • Adkar P., Dongare A., Ambavade S. and Bhaskar V.H. (2014). Trapa bispinosa Roxb.: A Review on Nutritional and Pharmacological Aspects. Hindawi Publishing Corporation Advances in Pharmacological Sciences Volume 2014, Article ID 959830, 13 pp.
  • Akao S., Maeda K., Hosoi Y., Nagare H., Maeda M. and Fujiwara T. (2013). Cascade Utilization of water chesnut: Recovery of Phenolics, Phosphoruz, and Sugars.Enviromental Science and Pollution Research, 20, 5373-5378.
  • Can A. and Sivrikaya H. (2016). The Combined Effects of Copper and Oil Treatment on Wood Chemical Properties. International Forestry Symposium (IFS 2016), pp.741-748, 07-10 December (2016).
  • Can A. and Sivrikaya H. (2017). Mantar Tahribatına Uğramış Titrek Kavak Odununun FT-IR Yöntemiyle Kimyasal Analizi. Journal of Bartin Faculty of Forestry, 19(1), 139-147. Chau C. F. and Huang, Y. L. (2004). Characterization of Passion Fruit Seed Fibres- A Potential Fibre Source. Food Chemistry, 85, 189–194.
  • Chen H., Ferrari C., Angiuli M., Yao J., Raspi C. and Bramanti E. (2010). Qualitative and Quantitative Analysis of Wood Samples by Fourier Transform Infrared Spectroscopy and Multivariate Analysis. Carbohyd. Polym., 82, 772–778.
  • Chiang P.Y. and Ciou J.Y. (2010). Effect of Pulverization on the Antioxidant Activity of Water Caltrop (Trapa taiwanensis Nakai) Pericarps. LWT-Food Science and Technology, 43, 361-365.
  • Donmez I.E., (2010). Yükselti Farkina Göre Sariçamin (Pinus Sylvestris L.) Anatomik ve Kimyasal Bileşiminde Meydana Gelen Değişimler. Bartin University Graduate School of Natural and Applied Sciences Bartın, Türkiye, pp.163.
  • El-Sayed S.A. and Mostafa M.E. (2014). Pyrolysis Characteristics and Kinetic Parameters Determination of Biomass Fuel Powders by Differential Thermal Gravimetric Analysis (TGA/DTG). Energy Conversion and Management, 85, 165-172.
  • Esteves B., Marques A.V., Domingos I. and Pereira H. (2013). Chemical Changes of Heat Treated Pine and Eucalypt Wood Monitored by FTIR. Maderas. Ciencia y tecnología, 15(2), 245-258.
  • Gonultas O. And Candan Z. (2018). Chemical Characterization and FTIR Spectroscopy of Thermally Compressed Eucalyptus Wood Panels. Maderas-Cienc Tecnol, 20(4).
  • Grigelmo-Miguel N. and Martin-Belloso O. (1999a). Characterization of Dietary Fiber from Orange Juice Extraction. Food Research International, 31(5), 355–361.
  • Grigelmo-Miguel N. and Martin-Belloso O. (1999b). Comparison of Dietary Fiber from by-Products of Processing Fruits and Greens and from Cereals. Lebensmittel-Wissenschaft und-Technologie, 32(8), 503–508
  • Herrera R., Erdocia X., Llano-Ponte R. and Labidi J. (2014). Characterization of Hydrothermally Treated Wood in Relation to Changes on Its Chemical Composition and Physical Properties. J. Anal. Appl. Pyrol., 107, 256-266.
  • Hijikata Y., Yasuhara A. And Sahashi Y. (2005). Effect of an Herbal Formula Containing Ganoderma lucidum on Reduction of Herpes Zoster Pain: A Plot Clinical Trial. Am. J. Chin. Med., 33(4), 517-523.
  • Huang H.C., Chao C.L., Liaw C.C., Hwang S.Y., Kuo Y.H., Chang T.C., Chao C.H., Chen C.J. and Kuo Y.H. (2016). Hypoglycemic Constituents Isolated from Trapanatans L. Pericarps. Journal of Agricultural and Food Chemistry, 64(19), 3794-3803.
  • Hummel M. And Kiviat E. (2004). Review of World Literature on Water Chesnut with Implications for Management in North America. Journal of Aquatic Plant Management, 42, 17-28.
  • Ishimaru K., Hata T., Bronsveld P., Meier M. and Imamura Y. (2007). Spectroscopic Analysis of Carbonization Behavior of Wood, Cellulose and Lignin. J. Mater. Sci., 42, 122-129.
  • Jaime L., Molla E., Fernandez A., Martin-Cabrejas M. A., Lopez- Andreu F. J. and Esteban R. M. (2002). Structural Carbohydrate Differences and Potential Source of Dietary Fiber of Onion (Allium Cepa L.) Tissues. Journal of Agricultural Food Chemistry, 50, 122–128.
  • Kalita P., Mukhopadhyay P.K. and Mukherjee A.K. (2007). Evaluation of the Nutritional Quality of Four Unexplored Aquatic Weeds from North-East India for the Formulation of Cost-Effective Fish Feeds. Food Chemistry, 103, 204-209.
  • Kalita P., Mukhopadhyay P.K. and Mukherjee A.K. (2008). Supplementation of Four non-conventional Aquatic Weeds to the Basal Diet of Catla catla (Ham.) and Cirrhinus mrigala (Ham.) Fingerlinings: Effect of Growth, Protein Utilization and Body Composition of Fish. Acta Ichthyologica et Piscatoria, 38, 21-27.
  • Kim Y.S., Hwang J.W., Han Y.K., Kwon H.J., Hong H. and Kim E.H. (2014). Antioxidant Activity and Protective Effects of Trapa japonica Pericarp Extracts Against tert-butylhydroperoxide-Induced Oxidative Damage in Chang Cells. Food and Chemical Toxicology, 64, 49-56.
  • Kotilainen R.A., Toivanen T.J. and Alèn R.J. (2000). FTIR Monitoring of Chemical Changes in Softwood During Heating. J. Wood Chemis. and Technol., 20(3), 307-320.
  • Lertphanich S., Wansuksri R., Tran T., Da G., Nga L.H. and Dufour D. (2013). Comparative Study on Physicochemical Properties of Ensete and Water Caltrop with Other Root, Tuber, and Legume Starches. Starch/Stärke, 65, 1038-1050.
  • Malviva N., Jain S., Jain A., Jain S. And Gurjar R. (2010). Evaluation of In Vitro Antioxidant Potential of Aqueous Extract of Trapa natans L. Fruits. Acta Poloniae Pharmaceutica-Drug Research, 67, 391-396.
  • Mattos B.D., Lourençon T.V., Serrano L., Labidi J. and Gatto D.A. (2015). Chemical Modification of Fast-Growing Eucalyptus Wood. Wood Science and Technology, 2(49), 273-288.
  • Missio A.L., Mattos B.D., de Cademartori P.H., Pertuzzatti A., Conte B. and Gatto, D.A. (2015). Thermochemical and Physical Properties of Two Fast-Growing Eucalypt Woods Subjected to Two-Step Freeze–Heat Treatments. Thermochimica Acta, 615, 15-22.
  • Mukherjee A.K., Kalita P., Unni B.G., Wann S.B., Saikia D. And Mukhopadhyay P.K.(2010). Fatty acid composition of four potential aquatic weeds and their possiple use as fish-feed neutraceuticals. Food Chemistry, 123, 1252-1254.
  • Muller G., Schöpper C., Vos H., Kharazipour A. and Polle A. (2009). FTIR-ATR Spectroscopic Analyses of Changes in Wood Properties During Particle and Fibreboard Production of Hard and Softwood Trees. BioResources, 4, 49-71.
  • Nedukha O.M. and Kordyum E. (2016).The Plasticity of Anatomical Structure and cell wall lignin in Trapa natans Adaptation to Nature Flooding.Annals of R.S.C.B., 21(1), 27-34.
  • Niranjan A., Verma S., Lehri A. and Amla D.V. (2013). High-Performance Thin-Layer Chromatographic Analysis for the Simultaneous Quantification of Four Phenolic Compounds in Green, Red, and Black Fruits of Trapa natans var. bispinosa Roxb. (Singhara). Journal of Planar Chromatography, 26, 316-321.
  • Nuopponen M. (2005). FT-IR and UV-Raman Spectroscopic Studies on Thermal Modification of Scots Pine Wood and Its Extractable Compounds. Helsinki University of Technology, Laboratory of Forest Products Chemistry, Reports Espoo, Ser A 23.
  • Nuopponen M., Wikberg H., Vuorinen T., Maunu S.L., Jämsä S. and Viitaniemi P. (2003). Heat-treated Softwood Exposed to Weathering. J. Applied Poly. Sci., 91, 2128-2134.
  • Ozgenc O., Durmaz S., Boyaci I.H. and Eksi-Kocak H. (2017). Determination of Chemical Changes in Heat-Treated Wood Using ATR-FTIR an FT Raman Spectrometry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 171, 395-400.
  • Liu W., Zhang J., Zhang C., Wang Y. and Li Y. (2010).Adsorptive Removal of Cr(VI) by Fe-modified activated Carbon Prepared from Trapanatans Husk. Chemical Engineering Journal, 162, 677-684.
  • Parker M.L. and Waldron K.W. (1995). Texture of Chinese Water Chesnut: Involvement of Cell Wall Phenolics. J. Sci. Food Agric., 68, 337-346.
  • Popescu C.M., Popescu M.C., Singurel G., Vasile C., Argyropoulos D.S. and Willfor S. (2007). Spectral Characterization of Eucalyptus Wood. Appl. Spectrosc., 61, 1168-1177.
  • Qin Z., Wang X.D., Liu H.M., Wang D.M. and Qin G.Y. (2018). Structural Characterization of Chinese Quince Fruit Lignin Pretreated with Enzymatic Hydrolysis. Bioresource Technology, 262, 212-220.
  • Sheng Z.W., Sun Z.G. and Shan J.X. (2006). The Developments of Studies on Healthful Function of Water Chesnut and Its Products. Food Research and Development, 27, 160-163.
  • Singh G.D., Sharma R., Bawa A.S. and Saxena D.C. (2008).Drying and Rehydration Characteristics of Water Chesnut (Trapanatans) as a Function of Drying Air Temprature. J. Food Enineering, 87, 213-221.
  • Stoicescu I., Popescu A., Sirbu R. and Bala C. (2012).Simultaneous Determination of Phenolic Acids in Water Caltrop by HPLC-DAD. Analytical Letters, 45, 2519-2529.
  • Sturtevant E. L. and Hedrick U. P., (1972). Sturtevant's Edible Plants of the World. Dover Publications, pp. 775.
  • Tjeerdsma B.F. and Militz H. (2005). Chemical Changes in Hydrothermal Treated Wood: FTIR Analysis of Combined Hydrothermal and Dry Heat-Treated Wood. European Journal of Wood and Wood Products, 63 (2), 102-111.
  • Traoré M., Kaal J. and Cortiza A.M. (2016). Application of FTIR Spectroscopy to the Characterization of Achaeological Wood. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 153, 63-70.
  • Wang B., Mu X., Zhang J. And Shao G. (2009). Effect of Cultivar and Ecological Environment on the Production of Trapa natans. Chin. Fruit Veg., 9, 18-19.
  • Wang J., Hao X., Yang M., Qin Y., Jia L., Chu J. and Zhang J. (2018). Impact of Lignin Content on Alkaline-Sulfite Pretreatment of Hybrid Pennisetum. Bioresource Technology, In Press, DOI: 10.1016/j.biortech.2018.07.049).
  • Watkins D., Nuruddin M.D., Hosur M., Tcherbi-Narteh A. and Jeelani S. (2015). Extraction and Characterization of Lignin from Different Biomass Resources. Journal of Materials Research and Technology, 4(1), 26-32.
  • Yasuda M., Yasutake K., Hino M., Ohwatari H., Ohmagari N. and Takedomi K. (2014). Inhibitory Effects of Polyphenols from Water Chesnut (Trapa japonica) Husk on Glycolytic Enzymes and Postprandial Blood Glucose Elevation in Mice. Food Chemistry, 165, 42-49.
  • Zhou C., Jiang W., Via B.K., Fasina O. And Han G. (2015). Prediction of Mixed Hardwood Lignin and Carbohydrate Content Using ATR-FTIR and FT-NIR. Carbohdyrate Polymers, 121, 336-341.
  • Zhu F. (2016). Chemical Composition, Health Effects, and Uses of Water Caltrop.Trends in Food Science&Technology, 49, 136-145.
  • Web-1: http://www.tubives.com/index.php?sayfa=1&tax_id=3899, consulted 6 June 2018.
  • Web-2: https://www.cabi.org/isc/datasheet/55040, consulted 6 June 2018.
  • Web-3: https://nas.er.usgs.gov/queries/greatlakes/FactSheet.aspx?SpeciesID=263&Potential=N&Type=0, consulted 1 August 2018.