YUMURTA KABUĞU TOZU KATKILANMIŞ SERT POLİÜRETAN KÖPÜKLER: TERMAL İLETKENLİK, BASMA MUKAVEMETİ VE YANMA DAVRANIŞLARININ İNCELENMESİ

Bu çalışmada; farklı kütlesel oranlarda yumurta kabuğu tozu (YKT) içeren sert poliüretan köpük kompozitler (SPKK) sentezlenmiştir. YKT, X-ışını kırınım difraktometresi (XRD), X-ışını floresans spektrometresi (XRF) ve Fourier dönüşümlü infrared spektrofotometresi (FTIR) kullanılarak karakterize edilmiştir. Köpüklerin yüzey morfolojileri taramalı elektron mikroskobu (SEM) ile incelenmiş, kapalı hücre oranları ve yoğunlukları gaz yer değiştirmeli piknometre kullanılarak belirlenmiş, termal iletkenlikleri ısı akış metre cihazı, basma mukavemetleri ise üniversal test cihazı kullanılarak ölçülmüştür. Yanma davranışının değerlendirilmesinde sınırlayıcı oksijen indeksi (LOI) ve konik kalorimetre test sonuçları kullanılmıştır. YKT miktarının köpüğün ortalama hücre boyutu, kapalı hücre oranı, termal iletkenliği, yoğunluğu, basma mukavemeti ve yanma davranışı üzerine etkileri araştırılmıştır. Elde edilen SPKK’lerin ortalama hücre boyutu ve termal iletkenlik değerlerinde katkı içermeyen sert poliüretan köpüğe (SPK) kıyasla azalma gözlenirken, kapalı hücre oranı ve yoğunluk değerlerinde artış tespit edilmiştir. %7 YKT katkılama ile poliüretan köpüğün termal iletkenliği yaklaşık %8 mertebesinde azalmıştır. Düşük katkı oranlarında SPKK’ler için basma mukavemeti değerleri SPK’ye kıyasla yüksek olmuş, katkı miktarındaki artış ile birlikte mukavemet değerleri düşmüştür. LOI değerleri, YKT varlığında az da olsa artmıştır. SPK için %19,7 olan LOI değeri, %25 YKT varlığında %20,4’e yükselmiştir. Konik kalorimetre sonuçları, kompozitlerin yanma performans indeksi değerlerinin SPK’ye kıyasla daha iyi olduğunu ortaya koymuştur.

EGG SHELL POWDER ADDED RIGID POLYURETHANE FOAMS: THE INVESTIGATION OF THEIR THERMAL CONDUCTIVITY, COMPRESSIVE STRENGTH AND FIRE BEHAVIORS

In this study, rigid polyurethane foam composites (SPKK’s) containing egg shell powder (YKT) with different ratio were synthesized. YKT was characterized by using X-ray difractometer (XRD), X-ray fluorescence spectrometer (XRF) and Fourier transform infrared spectrophotometer (FTIR). The surface morphology, closed cell ratio and density, thermal conductivity, and compressive strength of the foams were examined/measured/determined by scanning electron microscope (SEM), gas displacement pycnometer, heat flow meter, and universal test machine, respectively. Limiting oxygen index (LOI) and cone calorimetry were used to evaluate the fire performance of the foams. The effects of YKT amount on the average cell size, closed cell ratio, thermal conductivity, density, compressive strength and fire behavior of the foams were investigated. When compared with rigid polyurethane foam without additive (SPK), while the mean cell size and thermal conductivity values of the obtained SPKKs showed a decrease, closed cell content and density values of them increased. With SPKK containing 7% YKT, the thermal conductivity was reduced by about 8%. The compressive strength values for the SPKKs at low YKT ratios were higher than that of SPK, and the strength decreased with the further increase in the amount of additives. LOI values were improved slightly with the addition of YKT. When YKT loading was %25, the LOI value of SPKK, which is %19.7 for SPK, increased to %20.4. Cone calorimetry results showed that fire performance index values of composites are better than that of SPK

___

  • Ang B. C., Ang B. C., Ahmad N., Ong Z. C., Cheok S. C. and Chan H. F., 2016, Study of the Mechanical and the Thermal Insulation Properties of Polyurethane Coating Containing Chicken Eggshell and Rice Husk Ash as Fillers, Pigm. Resin Technol., 45, 313-319
  • Aydoğan B. and Usta N., 2015, Nanokalsit ve Kabaran Alev Geciktirici İlaveli Rijit Poliüretan Köpüklerin Isıl İletkenlik, Isıl Bozunma ve Yanma Direncinin Deneysel İncelenmesi, Isı Bilim Tek. Derg., 35, 63-74.
  • Cao X., Lee L. J., Widya T. and Macosko C., 2005, Polyurethane/Clay Nanocomposites Foams: Processing, Structure and Properties. Polymer, 46(3), 775-783.
  • Cheng J. J., Shi B. B., Zhou F. B. and Chen X. Y., 2014, Effects of Inorganic Fillers on the Flame‐Retardant and Mechanical Properties of Rigid Polyurethane Foams. J. Appl. Polym. Sci, 131, 1-9.
  • Czuprynski B., Paciorek-Sadowska J. and Liszkowska J., 2010, Properties of Rigid Polyurethane‐Polyisocyanurate Foams Modified with the Selected Fillers. J. Appl. Polym. Sci, 115(4), 2460-2469.
  • Danowska M., Piszczyk L., Strankowski M., Gazda M. and Haponiuk, J.T., 2013, Rigid Polyurethane Foams Modified with Selected Layered Silicate Nanofillers. J. Appl. Polym. Sci, 130, 2272-2281.
  • Daraei H., Mittal A., Noorisepehr M. and Daraei, F., 2013, Kinetic and Equilibrium Studies of Adsorptive Removal of Phenol onto Eggshell Waste, Environ. Sci. Pollut. Res. 20, 4603-4611.
  • Elkady M.F., Ibrahim A.M and El-Latif M.M.A., 2011, Assessment of the Adsorption Kinetics, Equilibrium and Thermodynamic for the Potential Removal of Reactive Red Dye Using Eggshell Biocomposite Beads, Desalination 278 (1–3), 412-423.
  • Elwakeel K.Z. and Yousif A.M., 2010, Adsorption of Malathion on Thermally Treated Egg Shell Material, Water Sci. Technol. 61 (4), 1035-1041.
  • Engin B., Demirtaş H. and Eken M., 2006, Temperature Effects on Egg Shells Investigated by XRD, IR and ESR Techniques. Radiat. Phys. Chem. 75(2), 268-277.
  • Fan H., Tekeei A., Suppes G. J. and Hsieh F. H., 2012, Properties of Biobased Rigid Polyurethane Foams Reinforced with Fillers: Microspheres and Nanoclay. Int. J. Polym. Sci., Article ID: 474803
  • Feng F. and Qian L., 2014, The Flame Retardant Behaviors and Synergistic Effect of Expandable Graphite and Dimethyl Methylphosphonate in Rigid Polyurethane Foams. Polym. Composite, 35(2), 301-309.
  • Freire M.N and Holanda J.N.F., 2006, Characterization of Avian Eggshell Waste Aiming Its Use in a Ceramic Wall Tile Paste. Cerâmica, 52, 240-244.
  • Gaan S., Liang S., Mispreuve H., Perler H., Naescher R. and Neisius M., 2015, Flame Retardant Flexible Polyurethane Foams from Novel Dopophosphonamidate Additives. Polym. Degrad. Stabil. 113, 180-188.
  • Harikrishnan G., Patro T.U. and Khakhar D.V., 2006, Polyurethane Foam-Clay Nanocomposites: Nanoclays as Cell Openers. Ind. Eng. Chem. Res., 45, 7126-7134.
  • Hebda E., Ozimek J., Raftopoulos K.N., Michałowski S., Pielichowski J., Jancia M. and Pielichowski K., 2015, Synthesis and Morphology of Rigid Polyurethane Foams with POSS as Pendant Groups or Chemical Crosslinks. Polym. Adv. Technol., 26, 932-940.
  • Kang J. W., Kim J. M., Kim M. S., Kim Y. H., Kim W. N., Jang W. and Shin D. S., 2009, Effects of Nucleating Agents on The Morphological, Mechanical and Thermal Insulating Properties of Rigid Polyurethane Foams. Macromol. Res., 17(11), 856-862.
  • Kang M.J., Kim Y.H., Park G.P., Han M.S., Kim W.N. and Park S.D., 2010, Liquid Nucleating Additives for Improving Thermal Insulating Properties and Mechanical Strength of Polyisocyanurate Foams. J. Mater. Sci., 45, 5412-5419.
  • Kim S. H., Lee M. C., Kim H. D., Park H. C., Jeong H. M., Yoon K. S. and Kim, B. K., 2010, Nanoclay Reinforced Rigid Polyurethane Foams J. Appl. Polym. Sci., 117, 1992-1997.
  • Kim S.H., Lim H. and Kim B.K., 2008, Effects of Initiator Type in Rigid Polyurethane Foams, Polym. Eng. Sci., 48, 1518-1523.
  • Kuh S.E. and Kim D.S., 2000, Removal Characteristics of Cadmium Ion by Waste Egg Shell, Environ. Technol. 21 (8), 883-890.
  • Lee S. T. and Ramesh N. S. (Eds.), 2004, Polymeric Foams: Mechanisms and Materials. CRC press.
  • Li T.T., Chuang Y.C., Huang C.H., Lou C.W. and Lin J.H., 2015, Applying Vermiculite and Perlite Fillers to Sound-Absorbing/Thermal-Insulating Resilient PU Foam Composites. Fiber. Polym., 16, 691-698.
  • Lim H., Kim E. Y. and Kim B. K., 2010, Polyurethane Foams Blown with Various Types of Environmentally Friendly Blowing Agents. Plast. Rubber Compos., 39(8), 364-369.
  • López-Galindo A. and Viseras C., 2004, Pharmaceutical and Cosmetic Applications of Clays, Clay Surfaces: Fundamentals and Applications. Volume 1, Ed: Wypych, F., Satyanarayana, K.G., Elsevier Academic Press, Oxford, England.
  • Lorenzetti A., Hrelja D., Besco S., Roso M. and Modesti M., 2010, Improvement of Nanoclays Dispersion through Microwave Processing in Polyurethane Rigid Nanocomposite Foams. J. Appl. Polym. Sci, 115(6), 3667-3674.
  • Meng X. Y., Ye L., Zhang X. G., Tang P. M., Tang J. H., Ji X. and Li Z. M., 2009, Effects of Expandable Graphite and Ammonium Polyphosphate on the Flame-Retardant and Mechanical Properties of Rigid Polyurethane Foams. J. Appl. Polym. Sci, 114(2), 853-863.
  • Mittal A., Teotia M., Soni R. K. and Mittal J., 2016, Applications of Egg Shell and Egg Shell Membrane as Adsorbents: A Review. J. Mol. Liq., 223, 376-387.
  • Modesti M., Lorenzetti A. and Besco S., 2007, Influence of Nanofillers on Thermal Insulating Properties of Polyurethane Nanocomposites Foams. Polym. Eng. Sci., 47(9), 1351-1358.
  • Nikje M.M.A., Garmarudi A.B., Haghshenas M. and Mazaheri Z., 2009, Improving the Performance of Heat Insulation Polyurethane Foams by Silica Nanoparticles, Nanotechnology in Construction 3, Part 3, 149-154.
  • Patro T. U., Harikrishnan G., Misra A. and Khakhar D. V., 2008, Formation and Characterization of Polyurethane-Vermiculite Clay Nanocomposite Foams. Polym. Eng. Sci., 48(9), 1778-1784.
  • Pattanayak A. and Jana S.C., 2005, Synthesis of Thermoplastic Polyurethane Nanocomposites of Reactive Nanoclay by Bulk Polymerization Methods. Polymer, 46, 3275-3288.
  • Piszczyk L., Strankowski M., Danowska M., Haponiuk J.T. and Gazda M., 2012, Preparation and Characterization of Rigid Polyurethane-Polyglycerol Nanocomposite Foams. Eur. Polym. J., 48, 1726-1733.
  • Rivera E. M., Araiza M., Brostow W., Castano V. M., Diaz-Estrada J. R., Hernández R. and Rodriguez J. R., 1999, Synthesis of Hydroxyapatite from Eggshells. Mater. Lett., 41(3), 128-134.
  • Sae M. R., Ramezani-Dakhel H., Khonakdar H. A., Heinrich G. and Wagenknecht U., 2013, A Comparative Study on Curing Characteristics and Thermomechanical Properties of Elastomeric Nanocomposites: The Effects of Eggshell and Calcium Carbonate Nanofillers. J. Appl. Polym. Sci, 127(6), 4241-4250.
  • Saint-Michel F., Chazeau L. and Cavaille J. Y., 2006, Mechanical Properties of High Density Polyurethane Foams: II Effect of the Filler Size. Compos. Sci. Technol., 66(15), 2709-2718.
  • Seo W. J., Sung Y.T., Kim S.B., Lee Y.B., Choe K.H., Choe S.H., Sung J.Y. and Kim W.N., 2006, Effects of Ultrasound on the Synthesis and Properties of Polyurethane Foam/Clay Nanocomposites. J. Appl. Polym. Sci., 102, 3764-3773.
  • Seo W.J., Park J.H., Sung Y.T., Hwang D.H., Kim W.N. and Lee H.S., 2004, Properties of Water-Blown Rigid Polyurethane Foams with Reactivity of Raw Materials. J. Appl. Polym. Sci, 93, 2334-2342.
  • Supri A. G., Ismail H. and Shuhadah S., 2010, Effect of Polyethylene-Grafted Maleic Anhydride (PE-G-MAH) on Properties of Low Density Polyethylene/Eggshell Powder (LDPE/ESP) Composites. Poly-Plast. Technol., 49(4), 347-353.
  • Tarakcılar A. R., 2011, The Effects of Intumescent Flame Retardant Including Ammonium Polyphosphate/Pentaerythritol and Fly Ash Fillers on the Physicomechanical Properties of Rigid Polyurethane Foams. J. Appl. Polym. Sci, 120(4), 2095-2102.
  • Thirumal M., Khastgir D., Singha N. K., Manjunath B. S. and Naik, Y. P., 2007, Mechanical, Morphological and Thermal Properties of Rigid Polyurethane Foam: Effect of the Fillers. Cell. Polym., 26, 245-259.
  • Thirumal M., Khastgir D., Singha N. K., Manjunath B. S. and Naik, Y. P., 2008, Effect of Foam Density on the Properties of Water Blown Rigid Polyurethane Foam. J. Appl. Polym. Sci, 108(3), 1810-1817.
  • Thirumal M., Khastgir D., Singha N. K., Manjunath B. S. and Naik, Y. P., 2009, Effect of a Nanoclay on the Mechanical, Thermal and Flame Retardant Properties of Rigid Polyurethane Foam. J. Macromol.Sci. A., 46(7), 704-712.
  • Thirumal M., Singha N. K., Khastgir D., Manjunath B. S. and Naik, Y. P., 2010, Halogen-Free Flame‐Retardant Rigid Polyurethane Foams: Effect of Alumina Trihydrate and Triphenylphosphate on the Properties of Polyurethane Foams. J. Appl. Polym. Sci, 116(4), 2260-2268.
  • Usta N., 2012, Investigation of Fire Behavior of Rigid Polyurethane Foams Containing Fly Ash and Intumescent Flame Retardant by Using a Cone Calorimeter. J. Appl. Polym. Sci, 124(4), 3372-3382.
  • Widya T. and Macosko C.W., 2005, Nanoclay–Modified Rigid Polyurethane Foam. J. Macromol. Sci. B, 44, 897-908.
  • Xu Z. B., Kong W. W., Zhou M. X. and Peng M., 2010, Effect of Surface Modification of Montmorillonite on the Properties of Rigid Polyurethane Foam Composites. Chinese J. Polym. Sci., 28, 615-624.
  • Xu Z., Tang X. and Zheng J., 2008, Thermal Stability and Flame Retardancy of Rigid Polyurethane Foams/Organoclay Nanocomposites. Poly-Plast. Technol., 47(11), 1136-1141.
  • Yurtseven R., Tarakçılar A.R. and Topçu M., 2013, Dolgu Maddesi Olarak Kullanılan Farklı Uçucu Küllerin Sert Poliüretan Köpük Malzemelerin Mekanik Özellikleri İle Isıl ve Yanma Davranışları Üzerine Etkileri, J. Fac. Eng. Archit. Gaz., 28, 841-853.
  • Zhang X. L., Duan H. J., Yan D. X., Kang L. Q., Zhang W. Q., Tang J. H. and Li Z. M., 2015, A Facile Strategy to Fabricate Microencapsulated Expandable Graphite as a Flame-Retardant for Rigid Polyurethane Foams. J. Appl. Polym. Sci, 132, 42364.
  • Zhang M., Luo Z., Zhang J., Chen S. and Zhou Y., 2015, Effects of a Novel Phosphorus-Nitrogen Flame Retardant on Rosin-Based Rigid Polyurethane Foams. Polym Degrad Stabil., 120, 427-434.
  • Zhu M., Bandyopadhyay-Ghosh S., Khazabi M., Cai H., Correa C. and Sain M., 2012, Reinforcement of Soy Polyol-Based Rigid Polyurethane Foams by Cellulose Microfibers and Nanoclays, J. Appl. Polym. Sci., 124, 4702-4710.
Isı Bilimi ve Tekniği Dergisi-Cover
  • ISSN: 1300-3615
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1977
  • Yayıncı: TÜRK ISI BİLİMİ VE TEKNİĞİ DERNEĞİ
Sayıdaki Diğer Makaleler

YÜKSEK SICAKLIK PROTON DEĞİŞİM MEMBRAN YAKIT HÜCRESİ MİKRO-KOJENERASYON UYGULAMASININ DENEYSEL VE TEORİK İNCELENMESİ

Yılser DEVRİM, Ekin ÖZGİRGİN

DİKDÖRTGENSEL MİKROKANALLARDA TEK FAZLI AKIŞKAN AKIŞI VE ISI TRANSFERİ KARAKTERİSTİKLERİNİN DENEYSEL İNCELENMESİ

Burak MARKAL, Orhan AYDIN, Mete AVCI

YÜKSEK SICAKLIK PROTON DEĞİŞİM MEMBRAN YAKIT HÜCRESİ MİKROKOJENERASYON UYGULAMASININ DENEYSEL VE TEORİK İNCELENMESİ

Yılser DEVRİM, Ekin ÖZGİRGİN YAPICI

BALIKESİR RÜZGAR ENERJİSİ POTANSİYELİNİN ARAŞTIRILMASI VE TÜRBİNLERİN EKONOMİK ANALİZ KAPSAMINDA KARŞILAŞTIRILMASI

Asiye ASLAN

YUMURTA KABUĞU TOZU KATKILANMIŞ SERT POLİÜRETAN KÖPÜKLER: TERMAL İLETKENLİK, BASMA MUKAVEMETİ VE YANMA DAVRANIŞLARININ İNCELENMESİ

Murat ERDEM, Emre AKDOĞAN, Mustafa ÜREYEN, Oktay UYSAL, Metin KAYA, Ceren IRMAK

DBD PLAZMA EYLEYİCİSİ SİNYAL MODÜLASYONUNUN NACA 0015 ETRAFINDAKİ AKIŞ KONTROLÜNE ETKİSİ

Adem GÜLER, Mehmet SEYHAN, Yahya AKANSU

SİLİNDİRİK BİR GÜNEŞ DAMITMA SİSTEMİNİN İÇ HAZNE YÜKSEKLİĞİNİN DAMITIM MİKTARINA ETKİSİNİN SAYISAL OLARAK İNCELENMESİ

Özgür EKİCİ

KÜÇÜK-ÖLÇEKLİ BİR PROSES ISI UYGULAMASINA İLİŞKİN PARABOLİK OLUK KOLEKTÖR AĞININ PERFORMANS TESTİ

İbrahim YILMAZ, Hakan HAYTA, Recep YUMRUTAŞ, Mehmet SÖYLEMEZ

DİFÜZÖR TİPİ YANMA ODASINDA GERÇEKLEŞEN ÖN KARIŞIMLI TÜRBÜLANSLI YANMADA ORTAYA ÇIKAN ALEVİN KONUMUNUN TÜRBÜLANS YOĞUNLUĞU VE TÜRBÜLANS UZUNLUK ÖLÇÜSÜ İLE DEĞİŞİMİNİN SAYISAL OLARAK İNCELENMESİ

Ibrahim NAZZAL, Özgür ERTUNÇ

BİR SİLİNDİRDEN ZORLANMIŞ TÜRBÜLANSLI TAŞINIM ISI GEÇİŞİNDE RANS VE LES MODELLERİNİN KIYASLAMALI BİR DEĞERLENDİRMESİ

Zekeriya ALTAÇ, Necati MAHİR