JEOTERMAL ENERJİ KAYNAKLI KALİNA ÇEVRİMİNİN TERMODİNAMİK VE EKONOMİK ANALİZİ

Bu çalışmada, jeotermal enerjiyle çalışan Kalina Çevrimi’nin optimum tasarım parametrelerinin belirlenmesi için termodinamik ve ekonomik analizler yapılmıştır. Türbin giriş basıncı, evaporatördeki jeotermal akışkan çıkış sıcaklığı, kondanser basıncı ve amonyak kütle oranı sistemin değişken parametreleridir. Simav bölgesindeki orta sıcaklıklı jeotermal kaynağın termodinamik özellikleri sistem tasarımlarında kullanılmıştır. Sistemin enerji ve ekserji verimleri termodinamik analizler ile değerlendirilmiştir. Ayrıca, sistem net bugünkü değer yöntemi ile ekonomik olarak incelenmiştir. Ekserji analizi sonucunda, sistemin toplam ekserji yıkımı içerisinde maksimum ekserji yıkımının evaporatörde meydana geldiği tespit edilmiştir. Kütlece % 90 amonyak bileşenli sistem tasarımında, evaporatördeki ekserji yıkımı, sistemdeki toplam ekserji yıkımının % 66.5’ini oluşturmaktadır.Ekserji analizleri sonucunde en yüksek ekserji yıkımının evaporatörde oluştuğu ve % 90 amonyak bileşenli sistem tasarımında, evaporatördeki ekserji yıkımı, toplam sistemdeki ekserji yıkımının % 66.5’ini oluşturmaktadır. En etkin sistem tasarımının enerji verimliliği ve ekserji verimliliği sırasıyla % 13.04 ve % 51.81 olarak belirlenmiştir. Optimum sisteme ait evaporatördeki jeotermal su çıkış sıcaklığı, amonyak kütle oranı, türbin giriş basıncı ve kondenser basıncı sırasıyla 353.15 K, % 90, 4808 kPa ve 700 kPa olarak belirlenmiştir. Bu sisteme ait enerji verimliliği ve ekserji verimliliği sırasıyla % 13.04 ve % 51.81 olarak belirlenmiştir. Ayrıca bu sistemin net bugünkü değeri 119.377 Milyon ABD$ olarak hesaplanmış ve ekonomik açıdan yatırıma uygun olduğu görülmüştür.

THERMODYNAMIC AND ECONOMIC ANALYSIS OF GEOTHERMAL ENERGY POWERED KALINA CYCLE

In this study, thermodynamic and economic analysis have been carried out to the determination of optimum design parameters of Kalina Cycle. The optimization of four key parameters (turbine inlet pressure, geothermal water outlet temperature at evaporator, condenser pressure and ammonia mass fraction) is also conducted. The thermodynamic properties of the medium temperature geothermal resource in the Simav region are used in the system designs. The energy efficiency and exergy efficiency of the system are evaluated through the thermodynamic analysis. Also, the system has been investigated economically with the net present value method. As a result of the exergy analysis, it is determined that the maximum exergy destruction occurs in the evaporator within the total exergy destruction of the system. In the system design with 90 % ammonia mass fraction, the exergy destruction in the evaporator constitutes 66.5 % of the total exergy destruction in the system. The geothermal water outlet temperature at evaporator, ammonia mass fraction, turbine inlet pressure and condenser pressure of the most effective geothermal energy powered Kalina Cycle are determined as 353.15 K, 90 %, 4808 kPa and 700 kPa, respectively. The energy efficiency and exergy efficiency of this system are calculated as 13.04 % and 51.81 %, respectively. Also, the net present value of this system is calculated as 119.377 Million US$ and it is seen that it is suitable for investment in economic terms.

___

  • Acar, S.M. and Arslan, O., 2017, Exergo-economic evaluation of a new drying system boosted by Ranque–Hilsch vortex tube, Applied Thermal Engineering, 124, 1–16.
  • Acar, S.M. and Arslan, O., 2019, Energy and exergy analysis of solar energy-integrated, geothermal energy-powered Organic Rankine Cycle, Journal of Thermal Analysis and Calorimetry, 137 (2), 659-666.
  • Aminyavari, M., Najafi, B., Shirazi, A., and Rinaldi, F., 2014, Exergetic, economic and environmental (3E) analyses, and multi objective optimization of a CO2/NH3 cascade refrigeration system, Applied Thermal Engineering, 65, 42-50.
  • Arslan, O., 2008, Ultimate evaluation of Simav-Eynal geothermal resources: design of integrated system and its energy-exergy analysis, Ph.D. thesis, Institute of Applied Sciences Eskisehir Osmangazi University, Turkey (in Turkish).
  • Arslan, O., 2010, Exergoeconomic evaluation of electricity generation by the medium temperature geothermal resources, using a Kalina cycle: Simav case study, International Journal of Thermal Sciences, 49 (9), 1866-1873.
  • Arslan, O., 2011, Power generation from medium temperature geothermal resources: ANN-based optimization of Kalina cycle system-34, Energy, 36 (5), 2528-2534.
  • Ashouri, M., Vandani, A.M.K., Mehrpooya, M., Ahmadi, M.H. and Abdollahpour, A., 2015, Techno-economic assessment of Kalina cycle driven by a parabolic trough solar collector, Energy Conversion and Management, 105, 1328-1339.
  • Bejan, A., Tsatsaronis, G. and Moran, M., 1996, Thermal design and optimization, New York: John Wiley & Sons Inc., USA.
  • Cao, L., Wang, J., Chen, L. and Dai, Y., 2018, Comprehensive analysis and optimization of Kalina-Flash cycles for low-grade heat source, Applied Thermal Engineering, 131, 540-552.
  • Deepak, K., Gupta, A.V.S.S.K.S., Srinivas, T., Prabhakar Vattikuti, S.V. and Deva Prasasd, S., 2014, Investigation of separator parameters in Kalina Cycle systems, International Journal of Current Engineering and Technology, Special Issue 2, 496-500.
  • Eller, T., Herberle, F. and Brüggemann, D., 2017, Techno-economic analysis of novel working fluid pairs for the Kalina cycle, Energy Procedia, 129, 113-120.
  • He, J., Chao, L., Xu, X., Li, Y., Wu, S. and Xu, J., 2014, Performance research on modified KCS (Kalina cycle system) 11without throttle valve, Energy, 64, 389-397.
  • Igobo, O.N. and Davies, P.A., 2016, Review of low-temperature vapour power cycle engines with quasi-isothermal expansion, Applied Energy, 180, 834-848.
  • Internet, 2019, CEPCI Chemical Engineering Plant Cost Index, Plant Cost Index 2018, https://www.chemengonline.com/2019-cepci-updates-january-prelim-and-december-2018-final/.
  • Internet, 2019, CBRT Central Bank of Republic of Turkish, Discount rate and interest rate of Turkey 2018, https://www.tcmb.gov.tr/wps/wcm/connect/TR/TCMB+TR/Main+Menu/Temel+Faaliyetler/Para+Politikasi/Reeskont+ve+Avans+Faiz+Oranlari.
  • Kalina, A.I., 1984, Combined-Cycle System with Novel Bottoming Cycle, Journal of Engineering for Gas Turbines and Power, 106 (4), 737-742.
  • Lemmon, E.W., Bell, I.H., Huber, M.L. and McLinden, M.O., 2018, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology.
  • Li, X., Zhang, Q. and Li, X., 2013, A Kalina cycle with ejector, Energy, 54, 212-219.
  • Mergner, H. and Weimer, T., 2015, Performance of ammonia-water based cycles for power generation from low enthalpy heat sources. Energy, 88, 93-100.
  • Modi, A. and Haglind, F., 2015, Thermodynamic optimisation and analysis of four Kalina cycle layouts for high temperature applications, Applied Thermal Engineering, 76, 196-205.
  • Nasruddin, Usvika R., Rifaldi, M. and Noor, A., 2009, Energy and exergy analysis of Kalina cycle system (KCS) 34 with mass fraction ammonia-water mixture variation, Journal of Mechanical Science and Technology, 23, 1871-1876.
  • Prananto, L.A., Zaini, I.N., Mahendranata, B.I., Juangsa, F.B., Aziz, M. and Soelaiman, T.A.F., 2018, Use of the Kalina cycle as a bottoming cycle in a geothermal power plant: casestudy of the Wayang Windu geothermal power plant, Applied Thermal Engineering,132, 686-696.
  • Rodríguez, C.E.C., Palacio, J.C.E., Venturini, O.J., Lora, E.E.S., Cobas, V.M., dos Santos, D.M., Dotto F.R.L. and Gialluca, V., 2013, Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil, Applied Thermal Engineering, 52 (1), 109-119.
  • Sadeghi, S., Saffari, H. and Bahadormanesh, N., 2015, Optimization of a modified double-turbine Kalina cycle by using Artificial Bee Colony algorithm, Applied Thermal Engineering, 91, 19-32.
  • Saffari, H., Sadeghi, S., Khoshzat, M. and Mehregan, P., 2016, Thermodynamic analysis and optimization of a geothermal Kalina cycle system using Artificial Bee Colony algorithm, Renewable Energy, 89, 154-167.
  • Singh, O.K. and Kaushik, S.C., 2013, Energy and exergy analysis and optimization of Kalina cycle coupled with a coalfired steam power plant, Applied Thermal Engineering, 51, 787-800.
  • Sun, F., Zhou, W., Ikegami, Y., Nakagami, H. and Su, X., 2014, Energy-exergy analysis and optimization of the solar-boosted Kalina cycle system 11 (KCS-11), Renewable Energy, 66, 268-279.
  • Turton, R., Shaeiwitz, J.A., Bhattacharyya, D. and Whiting, WB., 2018, Analysis, Synthesis, and Design of Chemical Processes. 5th ed, Upper Saddle River New Jersey: Prentice Hall, USA.
  • Varma, G.V.P. and Srinivas, T., 2017, Power generation from low temperature heat recovery, Energy Conversion and Management, 151, 123-135.
  • Wang, E. and Yu, Z., 2016, A numerical analysis of a composition-adjustable Kalina cycle power plant for power generation from low-temperature geothermal heat sources, Applied Energy, 180, 834-848. Wang, E., Yu, Z. and Zhang, F., 2017, Investigation on efficiency improvement of a Kalina cycle by sliding condensation pressure method, Energy Conversion and Management, 151, 123-135.
  • Yari, M., Mehr, A.S., Zare, V., Mahmoudi, S.M.S. and Rosen, M.A., 2015, Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a lowgrade heat source, Energy, 83, 712-722.
  • Zare, V. and Moalemian, A., 2017, Parabolic trough solar collectors integrated with a Kalina cycle for high temperature applications: Energy, exergy and economic analyses, Energy Conversion and Management, 151, 681-692.
  • Zarrouka, S.J. and Purnanto, M.H., 2015, Geothermal steam-water separators; design overview, Geothermics, 53, 236-254.
  • Zhang, X., He, M. and Zhang, Y., 2012, A review of research on the Kalina cycle. Renewable Sustainable Energy Reviews, 16, 5309-5318.