DİFÜZÖR TİPİ YANMA ODASINDA GERÇEKLEŞEN ÖN KARIŞIMLI TÜRBÜLANSLI YANMADA ORTAYA ÇIKAN ALEVİN KONUMUNUN TÜRBÜLANS YOĞUNLUĞU VE TÜRBÜLANS UZUNLUK ÖLÇÜSÜ İLE DEĞİŞİMİNİN SAYISAL OLARAK İNCELENMESİ

Bu makalenin amacı, ön karışımlı yanma sonucu oluşan alevin, çeşitli türbülans yoğunluklarına ve türbülans uzunluk ölçeğine maruz kalması sonucu oluşan alev yeri değişikliğini incelemektir. Yakıtın yanma odasına giriş hızını değiştirmeden, sadece türbülans yoğunluğunun ve türbülans uzunluk ölçeğinin alev yeri üstüne etkisini görebilmek için araştırmalar difüzör tipi yanma odasında gerçekleştirilmiştir. Propanın türbülanslı ön karışımlı yanma simulasyonları tutarlı alev modeli (coherent flame model) kullanılarak kararlı akış rejiminde gerçekleştirilmiştir. Orta ve yüksek türbülans uzunluk ölçeği kullanıldığında türbülans yoğunluğundaki artış ile alevin difüzörün girişine doğru hareket ettiği gözlemlenmiştir. Düşük uzunluk ölçeği kullanılarak gerçekleştirilen simulasyonlarda, alev türbülans yoğunluğunun artması ile girişe doğru yaklaştığı ancak türbülans yoğunluğunun daha da arttılmasına rağmen alev konumunda kayda değer bir değişiklik olmadığı gözlemlenmiştir. Sonuçlar, türbülans yoğunluğu ve türbülans uzunluk ölçeğindeki artışın, maksimum alev alan yoğunluğunu arttırdığını göstermektedir. Dahası türbülans yoğunluğunun ve uzunluk ölçeğinin alev alan yoğunluğu, alevin şekli ve konumu üzerinde aynı anda etkili olduğu gösterilmiştir.

NUMERICAL INVESTIGATION OF THE FLAME LOCATION OF TURBULENT PREMIXED COMBUSTION IN A DIFFUSER BURNER EXPOSED TO VARIOUS TURBULENCE INTENSITIES AND TURBULENCE LENGTH SCALES

This study aims to investigate the response of the flame location of a turbulent premixed flame that has been exposed to various turbulence intensities and turbulence length scales. A diffuser-type burner is used to reveal the influence of turbulence intensity and turbulence length scales on the flame location of premixed propane–air flames without changing the inlet velocity of the fuel. Numerical simulations are performed for the turbulent premixed propane flames by using a coherent flame model under steady-state conditions. Results show that the flame location moves toward the inlet of the diffuser combustor with an increase in turbulence intensity for moderate and high turbulence length scales. The behavior of the flame location is different for the low turbulence length scale. The flame location initially decreases with an increase in turbulence intensity and subsequently stabilizes. Furthermore, the maximum flame area density is shown to increase with an increase in the turbulence intensity and the turbulence length scale, as the flame moves toward the inlet in these cases. It is clearly documented how turbulence intensity and turbulence length scale simultaneously influence the flame area density, flame shape, and flame location in a diffuser- type burner.

___

  • Abdel-Gayed R. G., Bradley D., and Lung F. K.-K., 1989, Combustion Regimes and the Straining of Turbulent Premixed Flames, Combustion and Flame, 76, 213–218.
  • Bagdanavicius A., Bowenb P. J., Bradleyc D., Lawes M. and Mansour M. S., 2015, Stretch Rate Effects and Flame Surface Densities in Premixed Turbulent Combustion up to 1.25 MPa, Combustion and Flame, 162, 4158-4166.
  • Borghi R., 1989, Turbulent Combustion Modelling, Progress in Energy and combustion, 14, 145-295.
  • Boudier P., Henriot S., Poinsot T. and Baritaud T., A, 1992, Model for Turbulent Flame Ignition and Propagation in Spark Ignition Engines, Proceedings of the Combustion Institute, 24, 503-510.
  • Bray, K. N C, Moss and J. B., 1977, a Unified Statistical Model of the Premixed Turbulent Flame, Acta Astronautica, 4, 291-219.
  • Cant R. S., Pope S. B., and Bray K. N. C., 1990, Modelling of Flamelet Surface-to-Volume Ratio in Turbulent Premixed Combustion, Twenty-Third Symposium Internationational on Combustion/The Combustion Institute, Cornell University, New York, 809–815.
  • CD-adapco, 2016, STAR CCM+ Documentation and User Guide, Version 11.02.009-R8, Melville, USA.
  • Chakraborty N., and Cant R. S., 2006, Statistical Behavior and Modeling of Theflame Normal Vectorin Turbulent Premixed Flames, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 50, 623–643.
  • Clavin, P., and G. Joulin., 1983, Premixed Flames in Large Scale and High-Intensity Turbulent Flow, Journal de Physique Lettres, 44, 1–12.
  • Duclos J M, Veynante D., and Poinsot T., 1993, A Comparison of Flamelet Models for Premixed Turbulent Combustion, Combustion and Flame, 7, 101–117.
  • Echekki T. and Mastorakos E., 2011, Turbulent Combustion Modeling (First Ed.) Springer-Verlag Berlin Heidelberg, New York:. Fru G., Thévenin D., and Janiga G., 2011, Impact of Turbulence Intensity and Equivalence Ratio on the Burning Rate of Premixed Methane-Air Flames, Energies, 4, 878–893.
  • Gülder Ö. L., 1990, Turbulence Premixed Flame Propagation Models for Different Combustion Regimes, 23rd Symposium International on Combustion, the Combustion Institute, 23, 743-750.
  • Gülder, Ö. L., and Smallwood G. L., 2007, Flame Surface Densities in Premixed Combustion at Medium To High Turbulence Intensities, Combustion Science and Technology, 179, 191–206.
  • Han Insuk, and Huh K. Y., 2008, Roles of Displacement Speed on Evolution of Flame Surface Density for Different Turbulent Intensities and Lewis Numbers in Turbulent Premixed Combustion’ Combustion and Flame, 152, 194–205.
  • Hartung G., Hult J., Kaminski C. F., Rogerson J. W. and Swaminathan N., 2008, Effect of Heat Release on Turbulence and Scalar-Turbulence Interaction in Premixed Combustion, Physics of Fluids, 20, 035110(1–16).
  • Kerl J., Lawn C., and Beyrau F., 2013, Three-Dimensional Flame Displacement Speed and Flame Front Curvature Measurements Using Quad-Plane PIV, Combustion and Flame, 160, 2757–2769.
  • Marble F. E. and Broadwell J. E., 1977, Coherent Flame Model for Turbulent Chemical Reactions, Project Squid Technical Report TRW-9-PV, Purdue Unversity, Indiana, USA.
  • Meneveau C., and Poinsot T., 1991, Stretching and Quenching of Flamelets in Premixed Turbulent Combustion, Combustion and Flame, 86, 311–32.
  • Peters N. 1989. ‘Length and Time Scales in Turbulent Combustion, Turbulent Reactive Flows, 242–56. In Borghi R., Murthy S.N.B., Editors, Turbulent Reactive Flows, Lecture Notes in Engineering, 40, 242–256.
  • Pope S.B., 1988, The Evolution of Surface in Turbulence’. Int. J. Engng Sci, 26, 445–469.
  • Pope S. B., 2000, Turbulent Flows (First Ed.), Cornell University, New York, USA.
  • Stiesch G., 2003, Modeling Engine Spray and Combustion Processes (First Ed.), Springer-Verlag Berlin Heidelberg, Hannover, Germany.
  • Tang B. H. Y., and Chan C. K., 2006, Simulation of Flame Surface Density and Burning Rate of a Premixed Turbulent Flame Using Contour Advection’ Combustion and Flame, 147, 49–66.
  • Tangermann E., Keppeler R., and Pfitzner M., 2010, ‘Premixed Turbulent Combustion Models for Large Eddy and RANS Simulations, Proceedings of ASME Turbo Expo : Power for Land, Sea and Air, 2, 203-212.
  • Veynante, D. and Vervisch L., 2002, Turbulent Combustion Modeling, Progress in Energy and Combustion Science, 120, 193–266.
  • Yuan, J., Ju Y. and Law C. K., 2006, Effects of Turbulence and Flame Instability on Flame Front Evolution, Physics of Fluids, 8, 104105-1– 104105-9.
  • Zimont V. L., Polifke W., Bettelini M and Weisenstein W., 1998, An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure, J. Eng. Gas Turbines & Power, 120, 526–532.
Isı Bilimi ve Tekniği Dergisi-Cover
  • ISSN: 1300-3615
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1977
  • Yayıncı: TÜRK ISI BİLİMİ VE TEKNİĞİ DERNEĞİ
Sayıdaki Diğer Makaleler

YUMURTA KABUĞU TOZU KATKILANMIŞ SERT POLİÜRETAN KÖPÜKLER: TERMAL İLETKENLİK, BASMA MUKAVEMETİ VE YANMA DAVRANIŞLARININ İNCELENMESİ

Murat ERDEM, Emre AKDOĞAN, Mustafa ÜREYEN, Oktay UYSAL, Metin KAYA, Ceren IRMAK

KÜÇÜK-ÖLÇEKLİ BİR PROSES ISI UYGULAMASINA İLİŞKİN PARABOLİK OLUK KOLEKTÖR AĞININ PERFORMANS TESTİ

İbrahim YILMAZ, Hakan HAYTA, Recep YUMRUTAŞ, Mehmet SÖYLEMEZ

SİLİNDİRİK BİR GÜNEŞ DAMITMA SİSTEMİNİN İÇ HAZNE YÜKSEKLİĞİNİN DAMITIM MİKTARINA ETKİSİNİN SAYISAL OLARAK İNCELENMESİ

Özgür EKİCİ

DBD PLAZMA EYLEYİCİSİ SİNYAL MODÜLASYONUNUN NACA 0015 ETRAFINDAKİ AKIŞ KONTROLÜNE ETKİSİ

Adem GÜLER, Mehmet SEYHAN, Yahya AKANSU

DİFÜZÖR TİPİ YANMA ODASINDA GERÇEKLEŞEN ÖN KARIŞIMLI TÜRBÜLANSLI YANMADA ORTAYA ÇIKAN ALEVİN KONUMUNUN TÜRBÜLANS YOĞUNLUĞU VE TÜRBÜLANS UZUNLUK ÖLÇÜSÜ İLE DEĞİŞİMİNİN SAYISAL OLARAK İNCELENMESİ

Ibrahim NAZZAL, Özgür ERTUNÇ

YÜKSEK SICAKLIK PROTON DEĞİŞİM MEMBRAN YAKIT HÜCRESİ MİKRO-KOJENERASYON UYGULAMASININ DENEYSEL VE TEORİK İNCELENMESİ

Yılser DEVRİM, Ekin ÖZGİRGİN

BALIKESİR RÜZGAR ENERJİSİ POTANSİYELİNİN ARAŞTIRILMASI VE TÜRBİNLERİN EKONOMİK ANALİZ KAPSAMINDA KARŞILAŞTIRILMASI

Asiye ASLAN

BİR SİLİNDİRDEN ZORLANMIŞ TÜRBÜLANSLI TAŞINIM ISI GEÇİŞİNDE RANS VE LES MODELLERİNİN KIYASLAMALI BİR DEĞERLENDİRMESİ

Zekeriya ALTAÇ, Necati MAHİR

YÜKSEK SICAKLIK PROTON DEĞİŞİM MEMBRAN YAKIT HÜCRESİ MİKROKOJENERASYON UYGULAMASININ DENEYSEL VE TEORİK İNCELENMESİ

Yılser DEVRİM, Ekin ÖZGİRGİN YAPICI

DİKDÖRTGENSEL MİKROKANALLARDA TEK FAZLI AKIŞKAN AKIŞI VE ISI TRANSFERİ KARAKTERİSTİKLERİNİN DENEYSEL İNCELENMESİ

Burak MARKAL, Orhan AYDIN, Mete AVCI