Karbon noktaların tarımsal üretimde kullanılması

Birleşmiş Milletler Gıda ve Tarım Örgütü’ne (FAO) göre dünya nüfusunun 2050 yılında 10 milyara ulaşacağını ve özellikle gelişmekte olan ülkelerde gıda ihtiyacının %50 oranda arttıracağı tahmin edilmektedir. Bu durum Dünya’da tarımsal anlamda köklü değişimlere gidilmesi gerekliliğini ortaya koymaktadır. Son yıllarda tarımsal alanlarda girdi verimliliğini arttırarak, gıda üretimini ve güvenliliğini arttırmak, tarım ve çevresel sorunlara çözüm sunmak amacıyla tarımda nanoteknoloji kullanılması umut verici bir gelişmedir. Nanoteknolojinin bir ürünü olan nano parçacıklar yeni kimyasal ve fiziksel özellikleri sayesinde tıp, elektronik, malzeme bilimi, biyoteknoloji ve enerji sektörlerinde kullanımı hızla artmaktadır. Karbon malzemeler arasında son zamanlarda çok popüler olan Karbon noktaları (Carbon dots), boyutları genellikle 0.1-20 nm aralığına sahip yarı karbon bir malzeme olarak tanımlanmaktadır. Yapıları, özellikleri, görüntüleme ve karakterizasyon seçenekleri bakımından daha önce çalışılmış karbon formlarına göre önemli farklılıklara sahip Karbon Noktalar çeşitli fizikokimyasal özellikleri, yüksek biyo-uyumluluk, yüksek stabilite ve optik özellikleri ile öne çıkmaktadır. Karbon noktalar bitkilerin verimini önemli ölçüde arttıran kül bileşenidir. Tarımsal üretimde tohum çimlenmesi, kök uzaması, bitki hastalıklarına karşı direnç ve karbon fiksasyonu artırma gibi pozitif etki göstererek bitki büyümesini desteklemektedir. Son zamanlarda Karbon noktalar tarımda, kimyasal ilaç kullanımı azaltma, gübrelemede bitki besin elementi kaybını minimuma indirmede, su ve besin elementinden etkin yararlanmayı sağlayarak verimi arttırmak amacıyla kullanılmaktadır. Bu derlemede, yeni bir nanogübre olarak tanımlayabileceğimiz Karbon noktaların, sentezi, tarımsal üretimde kullanımı ve etkileri üzerine yaptığımız literatür incelemeleri sonucunda elde ettiğimiz bilgiler mevcuttur.

The Use of Carbon Dots in Agricultural Production

According to the United Nations Food and Agriculture Organization (FAO), it is estimated that the world's population will reach 10 billion in 2050 and that the need for food, especially in developing countries, will increase by 50%. This situation shows the need for fundamental changes in the agricultural sense in the world. In recent years, the use of nanotechnology in agriculture has been a promising development in order to increase input efficiency in agricultural fields, increase food production and safety, and provide solutions to agricultural and environmental problems. Nano-particles, which are a product of nanotechnology, are rapidly increasing in use in medicine, electronics, materials science, biotechnology and energy sectors due to their new chemical and physical properties. Carbon dots, which have recently become very popular among carbon materials, are defined as a semi-carbon material, the dimensions of which usually have a december dec 0.1-20 nm. Structures, properties, characterization, and imaging options in terms of various physicochemical properties of Carbon Dots with significant differences according to the form previously studied carbon, high bio-compatibility, high stability, and optical properties stand out. Carbon is the component of ash, which significantly increases the yield of plants. It supports plant growth by showing positive effects such as seed germination, root elongation, resistance to plant diseases and increasing carbon fixation in agricultural production. Recently, carbon dots have been used in agriculture to reduce the use of chemical drugs, minimize the loss of plant nutrients in fertilization, and increase yields by providing effective use of water and nutrients. In this review, the information we have obtained as a result of literature reviews on the synthesis, use and effects of carbon dots, which we can define as a new nanogubber, in agricultural production, is available.

___

  • 1. Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., ur Rehman, H., ... & Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the Total Environment, 721, 137778.
  • 2. FAO, 2017. The Future of Food and Agriculture “Trends and Challenges”.
  • 3. Demirbilek, M. E. (2015). Tarimda ve gidada nanoteknoloji. Gıda Ve Yem Bilimi Teknolojisi Dergisi, (15).
  • 4. Saka E., & Gülel, G. T. (2015). Gıda endüstrisinde nanoteknoloji uygulamaları. Etlik Veteriner Mikrobiyoloji Dergisi, 26(2), 52-57.
  • 5. Li, Y., Xu, X., Lei, B., Zhuang, J., Zhang, X., Hu, C., ... & Liu, Y. (2021). Magnesium-nitrogen co-doped carbon dots enhance plant growth through multifunctional regulation in photosynthesis. Chemical Engineering Journal, 422, 130114.
  • 6. Yıldırım, N. (2018). Nanoteknoloji ve geleceğin çevreci polimeri nanoselüloz. Ormancılık Araştırma Dergisi, 5(2), 185-195
  • 7. Modi, S., Prajapati, R., Inwati, G. K., Deepa, N., Tirth, V., Yadav, V. K., ... & Jeon, B. H. (2021). Recent Trends in Fascinating Applications of Nanotechnology in Allied Health Sciences. Crystals, 12(1), 39.
  • 8. Wu, D., Zhou, J., Creyer, M. N., Yim, W., Chen, Z., Messersmith, P. B., & Jokerst, J. V. (2021). Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. Chemical Society Reviews, 50(7), 4432-4483.
  • 9. Parisi, C., Vigani, M., & Rodríguez-Cerezo, E. (2015). Agricultural nanotechnologies: what are the current possibilities?. Nano Today, 10(2), 124-127.
  • 10. Kang, Z., & Lee, S. T. (2019). Carbon dots: advances in nanocarbon applications. Nanoscale, 11(41), 19214-19224.
  • 11. Liu, J., Li, R., & Yang, B. (2020). Carbon dots: A new type of carbon-based nanomaterial with wide applications. ACS Central Science, 6(12), 2179-2195.
  • 12. Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736-12737.
  • 13. Sun, Y. P., Zhou, B., Lin, Y., Wang, W., Fernando, K. S., Pathak, P., ... & Xie, S. Y. (2006). Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society, 128(24), 7756-7757.
  • 14. Zheng, X. T., Ananthanarayanan, A., Luo, K. Q., & Chen, P. (2015). Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. small, 11(14), 1620-1636.
  • 15. Peng, Z., Han, X., Li, S., Al-Youbi, A. O., Bashammakh, A. S., El-Shahawi, M. S., & Leblanc, R. M. (2017). Carbon dots: biomacromolecule interaction, bioimaging and nanomedicine. Coordination Chemistry Reviews, 343, 256-277.
  • 16. Dinç, S., & Kara, M. (2018). Synthesis and Applications of Carbon Dots from Food and Natural Products. Journal of Apitherapy and Nature, 1(1), 33-37.
  • 17. Verma, S. K., Das, A. K., Gantait, S., Kumar, V., & Gurel, E. (2019). Applications of carbon nanomaterials in the plant system: a perspective view on the pros and cons. Science of the Total Environment, 667, 485-499.
  • 18. Wang, H., Zhang, M., Song, Y., Li, H., Huang, H., Shao, M., ... & Kang, Z. (2018). Carbon dots promote the growth and photosynthesis of mung bean sprouts. Carbon, 136, 94-102.
  • 19. Qu, S., Wang, X., Lu, Q., Liu, X., ve Wang, L. (2012). A biocompatible fluorescent ink based on water‐soluble luminescent carbon nanodots. Angewandte Chemie international edition, 51(49), 12215-12218.
  • 20. Li, Y., Xu, X., Wu, Y., Zhuang, J., Zhang, X., Zhang, H., ... & Liu, Y. (2020). A review on the effects of carbon dots in plant systems. Materials Chemistry Frontiers, 4(2), 437-448.
  • 21. Li, W., Zheng, Y., Zhang, H., Liu, Z., Su, W., Chen, S., ... & Lei, B. (2016). Phytotoxicity, uptake, and translocation of fluorescent carbon dots in mung bean plants. ACS applied materials & interfaces, 8(31), 19939-19945.
  • 22. Zheng, Y., Zhang, H., Li, W., Liu, Y., Zhang, X., Liu, H., & Lei, B. (2017). Pollen derived blue fluorescent carbon dots for bioimaging and monitoring of nitrogen, phosphorus and potassium uptake in Brassica parachinensis L. RSC advances, 7(53), 33459-33465.
  • 23. Su, L. X., Ma, X. L., Zhao, K. K., Shen, C. L., Lou, Q., Yin, D. M., & Shan, C. X. (2018). Carbon nanodots for enhancing the stress resistance of peanut plants. Acs Omega, 3(12), 17770-17777.
  • 24. Li, H., Huang, J., Lu, F., Liu, Y., Song, Y., Sun, Y., ... & Kang, Z. (2018). Impacts of carbon dots on rice plants: boosting the growth and improving the disease resistance. ACS Applied Bio Materials, 1(3), 663-672.
  • 25. Gull, A., Lone, A. A., & Wani, N. U. I. (2019). Biotic and abiotic stresses in plants. Abiotic and biotic stress in plants, 1-19.
  • 26. Van Velthuizen, H. (2007). Mapping biophysical factors that influence agricultural production and rural vulnerability (No. 11). Food & Agriculture Org., 2007.
  • 27. Choudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 90(5), 856-867.
  • 28. Das, B., Dadhich, P., Pal, P., Srivas, P. K., Bankoti, K., & Dhara, S. (2014). Carbon nanodots from date molasses: new nanolights for the in vitro scavenging of reactive oxygen species. Journal of Materials Chemistry B, 2(39), 6839-6847.
  • 29. Zhao, S., Lan, M., Zhu, X., Xue, H., Ng, T. W., Meng, X., ... & Zhang, W. (2015). Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS applied materials ve interfaces, 7(31), 17054-17060.
  • 30. Xiao, L., Guo, H., Wang, S., Li, J., Wang, Y., & Xing, B. (2019). Carbon dots alleviate the toxicity of cadmium ions (Cd 2+) toward wheat seedlings. Environmental Science: Nano, 6(5), 1493-1506.
  • 31. Sarikaya, F. (2019). Domates (solanum lycopersicum L.)te virüs enfeksiyonu ve kuraklık stresi sırasında mirnalar ve hedefledikleri myb transkripsiyon faktörlerinin ekspresyonlarının belirlenmesi (Master's thesis, Lisansüstü Eğitim Enstitüsü).
  • 32. Koç E., & ÜSTÜN, A. S. (2008). PATOJENLERE KARŞI BİTKİLERDE SAVUNMA VE ANTİOKSİDANLAR. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 24(1), 82-100.
  • 33. Bohlool, B. B., Ladha, J. K., Garrity, D. P., & George, T. (1992). Biological nitrogen fixation for sustainable agriculture: A perspective. Plant and soil, 141(1), 1-11.
International Journal of Life Sciences and Biotechnology-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2018
  • Yayıncı: International Society of Academicians
Sayıdaki Diğer Makaleler

mtDNA COI and Cyt b Analysis of Carassius auratus (Linnaeus, 1758) Species Living in Atatürk Dam Lake (Turkey)

Arif PARMAKSIZ, Aynur DEMİR, Dilara ULUSAL

Antioxidant, Antimicrobial Properties and In Silico Study of a N,N'-(ethane-1,2-diyl)bis(1-(9H-fluoren-2-yl)methanimine)

İlter DEMİRHAN, Erkan ÖNER, Adem NECİP, Aydın AKTAŞ, Medine ÇOTAK, Yetkin GÖK

Meralarda Kentsel Dönüşüm ve Gelişim Amaçlı Tahsis Amacı Değişikliği Talebinin Değerlendirilmesi: Doyran ve Kızılcaören Örneği

Ömer Faruk UZUN, Fatih ALAY

A Current and Common Cause of Secondary Spontaneous Pneumothorax: Covid- 19 Pneumonia

Nurmuhammet TAŞ, Muhammet NALDAN, Fatih ÖNER, Hülya NALDAN, Yener AYDİN

Karbon noktaların tarımsal üretimde kullanılması

Mehmet Han BAŞTÜRK, Şahane Funda ARSLANOĞLU, Rumeysa ÖZTÜRK

Antitumor Activity of Etoposide, Puerarin, Galangin and Their Combinations in Neuroblastoma Cells

Çağatay OLTULU, Melek AKINCI, Elvan BAKAR

Antibacterial Activity of Ethanol Leaf Extract of Sida acuta Against Some Clinical Bacterial Isolates

Maimuna HASSAN, Fatima M. MUSA, Firdausi ALİYU, Aliyu ADAMU

İşlenmiş gıdalar için GDO tespitinde modifiye DNA izolasyon yöntemlerinin karşılaştırılması

Begüm TERZİ AKSOY, Özlem ATEŞ SÖNMEZOĞLU

Investigation of The Potential Inhibitor Effects Of Lycorine On Sars-Cov-2 Main Protease (Mpro) Using Molecular Dynamics Simulations and MMPBSA

Barış KURT

Diversity Analysis of Common Vetch (Vicia Sativa L.) Lines and Cultivars Using Pairwise Combinations of Universal Rice Primers

Mustafa TOPU, İskender TİRYAKİ