Evaluation of the Effect of the Novolac Resin Ratio on the High-Temperature Performance of the Brake Pads

Evaluation of the Effect of the Novolac Resin Ratio on the High-Temperature Performance of the Brake Pads

___

  • [1] Kim YC, Cho MH, Kim SJ, Jang H. The effect of phenolic resin, potassium titanate, and CNSL on the tribological properties of brake friction materials. Wear. 2008;264(3-4):204-10.
  • [2] Akıncıoğlu G, Akıncıoğlu S, Öktem H, Uygur İ. Wear response of non-asbestos brake pad composites reinforced with walnut shell dust. Journal of the Australian Ceramic Society. 2020;56(3):1061-72.
  • [3] Öktem H, Akıncıoğlu S, Uygur İ, Akıncıoğlu G. A novel study of hybrid brake pad composites: new formulation, tribological behav- iour and characterisation of microstructure. Plastics, Rubber and Composites. 2021:1-13.
  • [4] Koch S, Köppen E, Gräbner N, von Wagner U. On the influence of multiple equilibrium positions on brake noise. Facta Universitatis, Series: Mechanical Engineering. 2021;19(4):613-32.
  • [5] Akıncıoğlu G, Uygur İ, Öktem H, Akıncıoğlu S. Bor oksit tozunun fren balatalarının tribolojik özelliklerine etkisi. Sakarya University Journal of Science. 2018;22(2):755-60.
  • [6] Gurunath P, Bijwe J. Friction and wear studies on brake-pad materi- als based on newly developed resin. Wear. 2007;263(7-12):1212-9.
  • [7] Akıncıoğlu G, Akıncıoğlu S, Öktem H, Uygur İ. Evaluation of the physical properties of hazelnut shell dust-added brake pad samples treated with cryogenic process. Politeknik Der. 2019;22(3):591-6.
  • [8] Ertan R, Yavuz N. An experimental study on the effects of manufac- turing parameters on the tribological properties of brake lining mate- rials. Wear. 2010;268(11-12):1524-32.
  • [9] Menapace C, Leonardi M, Secchi M, Bonfanti A, Gialanella S, Straf- felini G. Thermal behavior of a phenolic resin for brake pad manu- facturing. Journal of Thermal Analysis and Calorimetry. 2019;137(3):759-66.
  • [10]Wang HQ, Wu XY, Li TS, Liu XJ, Cong PH. Effect of the matrix resin structure on the mechanical properties and braking performance of organic brake pads. Journal of applied polymer science. 2012;126(5):1746-53.
  • [11]Kim SJ, Jang H. Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp. Tribology international. 2000;33(7):477-84.
  • [12]Lagel M, Hai L, Pizzi A, Basso M, Delmotte L, Abdalla S, et al. Au- tomotive brake pads made with a bioresin matrix. Industrial Crops and Products. 2016;85:372-81.
  • [13]Sathyamoorthy G, Vijay R, Lenin Singaravelu D. Brake friction composite materials: A review on classifications and influences of friction materials in braking performance with characterizations. Pro- ceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 2021:13506501211064082.
  • [14]Vijay R, Singaravelu DL, Jayaganthan R. Development and charac- terization of stainless steel fiber-based copper-free brake liner formu- lation: a positive solution for steel fiber replacement. Friction. 2020;8(2):396-420.
  • [15]Saikrishnan G, Jayakumari L, Vijay R. Influence of iron–aluminum alloy on the tribological performance of non-asbestos brake friction materials–a solution for copper replacement. Industrial Lubrication and Tribology. 2019.
  • [16]Wu Y, Zeng M, Xu Q, Hou S, Jin H, Fan L. Effects of glass-to-rubber transition of thermosetting resin matrix on the friction and wear prop- erties of friction materials. Tribology Int. 2012;54(54):51-7.
  • [17]Bijwe J, Majumdar N, Satapathy B. Influence of modified phenolic resins on the fade and recovery behavior of friction materials. Wear. 2005;259(7-12):1068-78.
  • [18]Bijwe J, Kumar M. Optimization of steel wool contents in non-as- bestos organic (NAO) friction composites for best combination of thermal conductivity and tribo-performance. Wear. 2007;263(7- 12):1243-8.
  • [19]Hong U, Jung S, Cho K, Cho M, Kim S, Jang H. Wear mechanism of multiphase friction materials with different phenolic resin matrices. Wear. 2009;266(7-8):739-44.
  • [20]Joo BS, Chang YH, Seo HJ, Jang H. Effects of binder resin on tribo- logical properties and particle emission of brake linings. Wear. 2019;434:1-9.
  • [21]Shin M, Kim J, Joo B, Jang H. Wear and friction-induced vibration of brake friction materials with different weight average molar mass phenolic resins. Tribology Letters. 2015;58(1):1-8.
  • [22]Cho MH, Kim SJ, Kim D, Jang H. Effects of ingredients on tribolog- ical characteristics of a brake lining: an experimental case study. Wear. 2005;258(11-12):1682-7.
  • [23]Manoharan S, Vijay R, Singaravelu DL, Kchaou M. Experimental investigation on the tribo-thermal properties of brake friction materi- als containing various forms of graphite: a comparative study. Ara- bian Journal for Science and Engineering. 2019;44(2):1459-73.
  • [24]Manoharan S, Vijay R, Kchaou MJIL, Tribology. Investigation on tribological and corrosion characteristics of oxide-coated steel and mild steel fiber-based brake friction composites. 2018;71(3):341-7.
  • [25]Sathyamoorthy G, Vijay R, Singaravelu DLJSTM, Properties. Syn- ergistic performance of expanded graphite-mica amalgamation based non-asbestos copper-free brake friction composites. 2022;10(1):015019.
  • [26]Vijay R, Lenin Singaravelu D, Filip PJSR, Letters. Influence of mo- lybdenum disulfide particle size on friction and wear characteristics of non-asbestos-based copper-free brake friction composites. 2020;27(01):1950085.
  • [27]Akıncıoğlu G, Akıncıoğlu S, Öktem H, Uygur İ. Brake pad perfor- mance characteristic assessment methods. International Journal of Automotive Science and Technology. 2021;5(1):67-78.
  • [28]Yun R, Filip P, Lu Y. Performance and evaluation of eco-friendly brake friction materials. Tribology International. 2010;43(11):2010- 9.
  • [29]Akıncıoğlu G, Öktem H, Uygur I, Akıncıoğlu S. Determination of friction-wear performance and properties of eco-friendly brake pads reinforced with hazelnut shell and boron dusts. Arabian Journal for Science and Engineering. 2018;43(9):4727-37.
  • [30]Akıncıoğlu G, Akıncıoğlu S, Öktem H, Uygur İ. Experimental inves- tigation on the friction characteristics of hazelnut powder reinforced brake pad. Reports in Mechanical Engineering. 2021;2(1):23-30.
  • [31]Vijay R, Manoharan S, Nagarajan SJIL, Tribology. Influence of pre- mixed dual metal sulfides on the tribological performance of copper- free brake friction materials. 2020.
  • [32]Otto J, Ostermeyer G-P. High-frequency vibrations in the contact of brake systems. Facta Universitatis, Series: Mechanical Engineering. 2019;17(2):103-12.
  • 33]Singaravelu DL, Vijay R, Filip PJW. Influence of various cashew friction dusts on the fade and recovery characteristics of non-asbestos copper free brake friction composites. 2019;426:1129-41.
  • [34]Cai P, Wang Y, Wang T, Wang Q. Effect of resins on thermal, me- chanical and tribological properties of friction materials. Tribology international. 2015;87:1-10.