The passive flow control around a truck-trailer model / Bir kamyon römork modeli etrafındaki pasif akış kontrolü

In this study the aerodynamic characteristics of 1/32 scale truck and trailer model were examined in a wind tunnel. The acting drag force to model truck and trailer combination is calculated and aerodynamic drag coefficient is determined. The wind tunnel tests were carried out in the range of 160 000 - 449 000 Reynolds numbers. In order to improve the aerodynamics structure of truck- trailer, one spoiler, one passive air channel and three different redirector is produced in three dimensional printer. These aerodynamic parts respectively added to base truck-trailer model and obtaining aerodynamic improvement rates compared. According to wind tunnel test results, the aerodynamic improvement rates are respectively 15,62 %, 18,80 %, 23,58 % and 21,54 %. The lowest drag coefficient was determined as 0,588 on model-3 of truck-trailer model. Özet: Bu çalışmada, 1/32 ölçekli kamyon ve treyler modeli aerodinamik özellikleri bir rüzgar tünelinde incelenmiştir. Model kamyon ve treyler kombinasyonu hareket sürtünme kuvveti hesaplanır ve aerodinamik sürtünme katsayısı belirlenir. 449 000 Reynolds sayıları - rüzgar tüneli testleri 160 000 aralığında gerçekleştirilmiştir. KAMYON römork, tek spoiler, tek pasif hava kanalı ve üç farklı yönlendiricisi aerodinamik yapısını iyileştirmek amacıyla üç boyutlu yazıcıdan üretilmektedir. Bu aerodinamik parçalar sırasıyla taban kamyon römork modeline eklenmiş ve elde aerodinamik iyileştirme oranları karşılaştırıldı. Rüzgar tüneli testi sonuçlarına göre, aerodinamik iyileştirme oranları sırasıyla 15,62,% 18,80,% 23,58 ve% 21,54% bulunmaktadır. Düşük sürtünme katsayısı modeli-3 kamyon römork model üzerinde 0,588 olarak belirlendi.

___

  • Wood, R.M. and Bauer, S.X.S. (2003). Simple and low cost aerodynamic drag reduction devices for tractor-trailer Trucks. SAE Technical Paper, 01–3377, 1-18.
  • Bayindirli, C.( 2015) “The Investigation Of Aerodynamic Drags For Truck And Trailer Combinations.” Gazi Universty, Graduate School Of Natural And Applied Sciences, Phd Thesis, 3-10.
  • Çakmak, M.A," Investigation of vehicles as aerodynamically”, Mühendis Makina, 41, 489, 2000.
  • Perzon, S., and Davidson, L. (2000). On transient modeling of the flow around vehicles using the Reynolds equation. International Conference on Applied Computational Fluid Dynamics (ACFD) Beijing China, 720-727.
  • Sarı, M,F. (2007). The Aerodynamic Analysis of Air Resistance Affecting the Front Form of Light Commercial vehicles And Its Effect on Fuel Consumption ion. Osmangazi University, Institute of Science and Technology, Master Thesis, Eskişehir, 28-54.
  • Modi, V.J., Hill, S.St. and Yokomimizo, T. (1995). Drag Reduction of Trucks Through Boundary-Layer Control. Journal of Wind Engineering and Industrial Aerodynamics 54/55, 583-594.
  • Gillieron, P., Kourta, A. (2010) “Aerodynamic Drag Reduction By Vertical Splitter Plates” Experiments In Fluids, : 48, 1-16.
  • Fourrie, G., Keirsbulck, L., Labraga, L., Gıllıeron, P. (2011)“ Bluff-Body Drag Reduction Using A Deflector.” Experiments In. Fluids, 50, 385-395,
  • Beaudoın, J.-F., Aider, J.-L. (2010) “Drag And Lift Reduction Of A 3d Bluff Body Using Vortex Generators”, Experiments In Fluids, 48, 771-789.
  • Ogburn, M.J., and Ramroth L.A. (2007). A truck efficiency and GHD reduction opportunities in the Canadian Truck Fleet (2004-2007). Rocky Mountain Instutue Report, Canadian, 1-13.
  • Çengel, A, Y, Cimbala J, M, “Fluid Mechanics Fundamentals and Applications”, (Translater. Tahsin Engin, H. Rıdvan Öz, Hasan Küçük, Şevki Çeşmeci), Güven Bilimsel, İzmir, 2008.
  • Solmaz, H. (2010). Determination Drag Coefficient of Different Vehicle Models in A Wind Tunnel. Gazi University, Institute of Science and Technology, Master Thesis, Ankara, 43-47.