Investigation of use of hybrid composite materials in automobile interior

Today, the issue of developing alternative new composite materials that can be obtained from environmentally friendly, renewable resources is an area that most researchers focus on. In many industrial sectors, the aim of transforming unsustainable products into sustainable products is common. Especially in the automotive sector, the rate of use in environmentally friendly materials with minimal damage to nature is increasing gradually instead of traditional materials. In this study, linen material, one of the natural fibers, and glass fibers with different weights per square meter were selected and the composite material was produced by vacuum-assisted resin transfer molding (VARTM) method using natural fiber reinforced epoxy matrix. Experimental studies have been conducted to examine the application of natural fiber reinforced composite materials as an alternative to traditional materials used in the vehicle interior. Thermogravimetric analysis, differential scanning calorimetric analysis, hardness, and impact tests were applied to the composites produced by the vacuum infusion method, and the basic mechanical properties and thermal stability of the materials were determined. The results show that adding different weights of glass fiber per square meter to natural fiber has been found to significantly increase the properties of composites in both thermal and mechanical aspects.

___

  • Wilson, “Vehicle weight is the key driver for automotive composites,” Reinf. Plast., vol. 61, no. 2, pp. 100–102, doi: 10.1016/j.repl.2015.10.002, Mar. 2017.
  • T. Ishikawa et al., “Overview of automotive structural composites technology developments in Japan,” Composites Science and Technology, vol. 155. pp. 221–246, doi: 10.1016/j.compscitech.2017.09.015, Feb-2018.
  • R. Brooks, "Composites in Automotive Applications: Design", no. February 2016. Elsevier Ltd., 2004.
  • G. Koronis, A. Silva, and M. Fontul, “Green composites: A review of adequate materials for automotive applications,” Compos. Part B Eng., vol. 44, no. 1, pp. 120–127, doi: 10.1016/j.compositesb.2012.07.004, 2013.
  • H. Adam, “Carbon fibre in automotive applications,” Mater. Des., vol. 18, no. 4–6, pp. 349–355, doi: 10.1016/s0261-3069(97)00076-9, 1997.
  • H. S. Park, X. P. Dang, A. Roderburg, and B. Nau, “Development of plastic front side panels for green cars,” CIRP J. Manuf. Sci. Technol., vol. 6, no. 1, pp. 44–52, doi: 10.1016/j.cirpj.2012.08.002, 2013.
  • P. K. Bajpai, I. Singh, and J. Madaan, “Development and characterization of PLA-based green composites: A review,” J. Thermoplast. Compos. Mater., vol. 27, no. 1, pp. 52–81, doi: 10.1177/0892705712439571, 2014.
  • M. Misra, J. K. Pandey, and A. K. Mohanty, "Biocomposites: Design and Mechanical Performance." Elsevier Ltd, 2015.
  • Mayyas, A. Qattawi, M. Omar, and D. Shan, “Design for sustainability in automotive industry: A comprehensive review,” Renew. Sustain. Energy Rev., vol. 16, no. 4, pp. 1845–1862, doi: 10.1016/j.rser.2012.01.012, 2012.
  • Y. Yang, R. Boom, B. Irion, D. J. van Heerden, P. Kuiper, and H. de Wit, “Recycling of composite materials,” Chem. Eng. Process. Process Intensif., vol. 51, pp. 53–68, doi: 10.1016/j.cep.2011.09.007, 2012.
  • L. Mohammed, M. N. M. Ansari, G. Pua, M. Jawaid, and M. S. Islam, “A Review on Natural Fiber Reinforced Polymer Composite and Its Applications,” Int. J. Polym. Sci., vol. 2015, pp. 1–15, doi: 10.1155/2015/243947, 2015.
  • S. A. Pradeep, R. K. Iyer, H. Kazan, and S. Pilla, "Automotive Applications of Plastics: Past, Present, and Future", Second Edi. Elsevier Inc., 2016.
  • K. Bledzki, O. Faruk, and V. E. Sperber, “Cars from Bio-Fibres,” Macromol. Mater. Eng., vol. 291, no. 5, pp. 449–457, doi: 10.1002/mame.200600113, 2006.
  • U. K. Vaidya, F. Samalot, S. Pillay, G. M. Janowski, G. Husman, and K. Gleich, “Design and manufacture of woven reinforced glass/polypropylene composites for mass transit floor structure,” J. Compos. Mater., vol. 38, no. 21, pp. 1949–1972, doi: 10.1177/0021998304048418, 2004.
  • G. Thilagavathi, E. Pradeep, T. Kannaian, and L. Sasikala, “Development of natural fiber nonwovens for application as car interiors for noise control,” J. Ind. Text., vol. 39, no. 3, pp. 267–278, doi: 10.1177/1528083709347124, 2010.
  • Alves et al., “Ecodesign of automotive components making use of natural jute fiber composites,” J. Clean. Prod., vol. 18, no. 4, pp. 313–327, doi: 10.1016/j.jclepro.2009.10.022, 2010.
  • G. Anuradha, “Composites from Natural Fibers: Hemp Fiber Reinforced Composites from 3D Orthogonal Woven Preforms and their Potential Applications in the US,” North Carolina State University, 2019.
  • H. Sezgin, “Investigation and Enhancement of The Mechanical Properties of the Fabric Reinforced Hybrid Composites,” Istanbul Techinical University, 2018.
  • G. Agarwal, A. Patnaik, R. kumar Sharma, and J. Agarwal, “Effect of stacking sequence on physical, mechanical and tribological properties of glass-carbon hybrid composites,” Friction, vol. 2, no. 4, pp. 354–364, doi: 10.1007/s40544-014-0068-9, 2014.
  • H. Sezgin and O. B. Berkalp, “The effect of hybridization on significant characteristics of jute/glass and jute/carbon-reinforced composites,” J. Ind. Text., vol. 47, no. 3, pp. 283–296, doi: 10.1177/1528083716644290, 2017.
  • F. C. Campbell, "Structural Composite Meterials." 2010.
  • G. Lee and N. P. Suh, "Axiomatic Design and Fabrication of Composite Structures: Applications in Robots, Machine Tools, and Automobiles". 2006.
  • Shahzad, “Impact and Fatigue Properties of Natural Fibre Composites,” University o f Wales, 2009.
  • H. L. Bos, M. J. A. Van Den Oever, and O. C. J. J. Peters, “Tensile and compressive properties of flax fibres,” J. Mater. Sci., vol. 7, pp. 1683–1692, 2002.
  • Baley, “Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase,” Compos. - Part A Appl. Sci. Manuf., vol. 33, no. 7, pp. 939–948, doi: 10.1016/S1359-835X(02)00040-4, 2002.
  • J. A. Foulk, D. E. Akin, and R. B. Dodd, “New low cost flax fibers for composites,” SAE Tech. Pap., doi: 10.4271/2000-01-1133, 2000.
  • T. Wallenberger, "Advanced Inorganic Fibers: Process - Structure - Properties - Applications", 1 st. Springer US, 1999.
  • K. K. Chawla, "Composite Materials:Science and Engineering," 3rd ed. 2012.
  • C. Long and C. D. Rudd, “A simulation of reinforcement deformation during the production of preforms for liquid moulding processes,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 208, no. 4, pp. 269–278, doi: 10.1243/PIME_PROC_1994_208_088_02, 1994.
  • Komus and N. Beley, "Composite applications for ground transportation", vol. 3–8. Elsevier Ltd., 2018.
  • M. M. Davoodi, S. M. Sapuan, D. Ahmad, A. Aidy, A. Khalina, and M. Jonoobi, “Concept selection of car bumper beam with developed hybrid bio-composite material,” Mater. Des., vol. 32, no. 10, pp. 4857–4865, doi: 10.1016/j.matdes.2011.06.011, 2011.
  • J. Tian and M. Chen, “Sustainable design for automotive products: Dismantling and recycling of end-of-life vehicles,” Waste Manag., vol. 34, no. 2, pp. 458–467, doi: 10.1016/j.wasman.2013.11.005, 2014.
  • S. Rwawiire, B. Tomkova, J. Militky, A. Jabbar, and B. M. Kale, “Development of a biocomposite based on green epoxy polymer and natural cellulose fabric (bark cloth) for automotive instrument panel applications,” Compos. Part B Eng., vol. 81, pp. 149–157, doi: 10.1016/j.compositesb.2015.06.021, 2015.
  • Petrone, V. D’Alessandro, F. Franco, B. Mace, and S. De Rosa, “Modal characterisation of recyclable foam sandwich panels,” Compos. Struct., vol. 113, no. 1, pp. 362–368, doi: 10.1016/j.compstruct.2014.03.026, 2014.
  • D. V. Parikh, Y. Chen, and L. Sun, “Reducing Automotive Interior Noise with Natural Fiber Nonwoven Floor Covering Systems,” Text. Res. J., vol. 76, no. 11, pp. 813–820, doi: 10.1177/0040517506063393, 2006.
  • S. C. W. Tseng, “Using bio-based materials in the automotive industry,” 2013.
  • Buchenauer, “Wood Fiber Polyamide Composites for Automotive Applications,” 2016.
  • S. M. Luz, A. Caldeira-Pires, and P. M. C. Ferrão, “Environmental benefits of substituting talc by sugarcane bagasse fibers as reinforcement in polypropylene composites: Ecodesign and LCA as strategy for automotive components,” Resour. Conserv. Recycl., vol. 54, no. 12, pp. 1135–1144, doi: 10.1016/j.resconrec.2010.03.009, 2010.
  • L. Leao, R. Rowell, and N. Tavares, “Applications of Natural Fibers in Automotive Industry in Brazil — Thermoforming Process,” Sci. Technol. Polym. Adv. Mater., pp. 755–761, doi: 10.1007/978-1-4899-0112-5_66, 1998.
  • Magurno, “Vegetable fibres in automotive interior components,” Angew. Makromol. Chemie, vol. 272, no. 4751, pp. 99–107, doi: 10.1002/(SICI)1522-9505(19991201)272:1<99::AID-APMC99>3.0.CO;2-C, 1999.
  • E. Ozen, A. Kiziltas, E. E. Kiziltas, and D. J. Gardner, “Natural fiber blend-nylon 6 composites,” Polym. Compos., vol. 34, no. 4, pp. 544–553, doi: 10.1002/pc.22463, Apr. 2013.
  • P. V. Joseph et al., “The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites,” Compos. Part A Appl. Sci. Manuf., vol. 34, no. 3, pp. 253–266, doi: 10.1016/S1359-835X(02)00185-9, 2003.
  • Z. Mei and D. D. L. Chung, “Glass transition and melting behavior of carbon fiber reinforced thermoplastic composite, studied by electrical resistance measurement,” Polym. Compos., vol. 21, no. 5, pp. 711–715, doi: 10.1002/pc.10224, 2000.
  • S. A. Ashter," Thermoforming of Single and Multilayer Laminates." 2014.
  • M. Jawaid, M. Thariq, and N. Saba, "Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites". Woodhead Publishing, 2019.
  • R. Sakthivel and D. Rajendran, “Experimental Investigation and Analysis a Mechanical Properties of Hybrid Polymer Composite Plates,” Int. J. Eng. Trends Technol., vol. 9, no. 8, pp. 407–414, doi: 10.14445/22315381/ijett-v9p278, 2014.
  • M. R. Mitchell, R. E. Link, P. P. R. Filho, T. da S. Cavalcante, V. H. C. de Albuquerque, and J. M. R. S. Tavares, “Brinell and Vickers Hardness Measurement Using Image Processing and Analysis Techniques,” J. Test. Eval., vol. 38, no. 1, p. 102220, doi: 10.1520/jte102220, 2010.
  • Zhou, “Structural responses of FRP elements under combined thermal and mechanical loadings: experiments and analyses,” no. July, pp. 15–16, 2005.
  • M. Lewin, "Handbook of Fiber Chemistry," 3 rd. CRC Press Taylor & Francis Group, 2007.
  • J. Lv, S. Bin Wu, and R. Lou, “Kinetic study of the thermal decomposition of hemicellulose isolated from corn stalk,” BioResources, vol. 5, no. 2, pp. 1281–1291, doi: 10.15376/biores.5.2.1281-1291, 2010.
  • K. C. Manikandan Nair, S. Thomas, and G. Groeninckx, “Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres,” Compos. Sci. Technol., vol. 61, no. 16, pp. 2519–2529, doi: 10.1016/S0266-3538(01)00170-1, 2001.
  • Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, no. 12–13, pp. 1781–1788, doi: 10.1016/j.fuel.2006.12.013, 2007.