Blast diffusion by different shapes of vehicle hull / Araç Gövdesinin Farklı Şekiller Tarafından Olan Patlama Dağıtımı

In many parts of the world, the blast is a frequent occurrence case. Blast damages humans as well to the property. The physics of blast is very complicated for analysis. Hence, researcher have been studying physics of anti vehicular (AV) mine explosion, explosive interaction with soil, gas expansion, interaction of explosive product with vehicles, human effects from AV mine explosion etc. Many strategies were discussed to mitigate the blast effect. To protect the military vehicle, many design measures are suggested. One of the measures could be the effective design of the shape of vehicle hull, which can dissipate blast energy in effective way. An analytical study on blast energy dissipation through different shaped hull of military vehicle is discussed in this paper. These vehicle hulls have same cross sectional perimeter and length is also kept same. Various responses after blast are studied on these hulls and comparison is done for an effective dissipation of blast energy. Özet: Dünyanın birçok kısmında patlama sık sık görülen bir durumdur. Patlama varlıklara olduğu kadar insanlara da zarar verir. Patlamanın fiziği analiz için oldukça karmaşıktır. Bu yüzden araştırmacılar taşıt karşıtı (AV) mayın patlaması, toprak ile etkileşimli patlayıcı,gaz patlamaları, araçlar ile patlayıcı ürün etkileşimi AV mayın patlamasından insan etkisi vs. konularda çalışmalar yapmaktadırlar.patlama etkisini hafifletmek için birçok strateji karşılaştırıldı. Askeri araçları korumak için birçok tasarım ölçümleri önerildi. Bu ölçümlerden biri patlama etkisini etkin bir yolla bertaraf edebilen aracın etkili şekil tasarımı olabilir. Askeri araçların farklı şekilleri aracılığıyla olan patlama enerji yitimi üzerine bir analitik çalışma bu çalışmada tartışıldı. Bu araç gövdeleri aynı kesitsel çevreye sahiptir ve uzunluk ta aynı korunur. Patlamadan sonraki çeşitli yanıtlar bu gövdede çalışıldı ve patlama enerjisinin etkin bir yayılımının kıyaslaması yapıldı.

___

  • Ramasamy, A., Hill, A.M., Hepper, A.E., Bull, A.M.J. and Clasper, J.C. (2009) ‘Blast Mines: Physics, Injury Mechanisms And Vehicle Protection’, Journal Army Medical Corps, Vol. 155 No. 4, pp.258-264.
  • Olson, M.D., Nurick, G.N. and Fagnan, J.R. (1993) ‘Deformation and rupture of blast loaded square plates-predictions and experiments’, International Journal of Impact Engineering, Vol. 13 No. 2, pp.279-291.
  • Nurick, G.N. (1995) ‘Deformation and tearing of blast-loaded stiffened square plates’, International Journal of Impact Engineering, Vol. 16 No. 2, pp.273-291.
  • Wang, J. (2001) Simulation of landmine explosion using LS-DYNA 3D software. Benchmark work of simulation of explosion in soil and air, D.o.D.-W.S.D.A.a.M.R. Laboratory, Editor. 2001, DSTO Aeronautical and Maritime Research Laboratory, 506 Lorimer St Fishermans Bend Vic 3207 Australia.
  • Brill, A., Cohen, B., Paul, A. and Bois, D. (2000) ‘Simulation of a mine blast effect on the occupants of an APC’. Paper presented at 6th European LS-DYNA Users’ Conference, Detroit 2000.
  • Fallet, R. (2008) ‘Mine explosion and blast effect on vehicle analysis of the potential damages on passengers’. Paper presented at 2nd European HyperWorks Technology Conference, Strasbourg, September 30th – October 1st, 2008.
  • Tremblay, J., Bergeron, D.M., Gonzalez, R. (1998) ‘KTA 1-29: Protection of Soft-Skinned Vehicle Occupants from Landmine Effects’. In: Program TTCP, editor. Val- Belair, Canada, Defence Research Establishment Valcartier, Quebec, Canada.
  • Schneck, W. (1994) ‘The Development of Mine Resistant Vehicles’. Virginia, USA.: Belvoir RD&E Centre, Directorate CS.
  • Ngo, T., Mendis, P., Gupta, A. and Ramsay, J. (2007) ‘Blast loading and blast effects on structures – an overview’, Electronics journal of structural engineering, special issue: loading on structure, pp.76-91.
  • TM 5-855-1 (1986) ‘Fundamentals of Protective Design for Conventional Weapons’, U.S. Department of the Army, Washington DC.
  • LS-DYNA Version 971 R6.1.0 (2012). A program for nonlinear dynamic analysis of structures in three dimension, Livermore Software Technology Corporation p 94550–1740.
  • Hyde DW (1991). CONWEP: Conventional Weapons Effects Program. 1991: US Army Engineer Waterways Experiment Station, USA.
  • Randers-Pehrson, G. and Bannister, K.A. (1997) ‘Airblast loading model for DYNA2D and DYNA3D’, Army research laboratory, ARL-TR-1310.