Uçucu Yağlar Kullanılarak Antibakteriyel Selülozik Membranların Üretilmesi

Bu çalışmada, Laurus nobilis, Oregano ve Cinnamomum zeylanicum bitkilerinden hidrodistilasyon yoluyla elde edilen uçucu yağlar kullanılarak Gluconacetobacter hansenii P2A (KUEN 1606) tarafından sentezlenen bakteriyel selüloz (BC) membranlara antimikrobiyel özellik kazandırılması hedeflenmiştir. Uçucu yağların analizi gaz kromatografisi kütle spektrometresi (GC-MS) kullanılarak gerçekleştirilmiştir. Analiz sonucunda L. nobilis, Oregano ve Cinnamomum zeylanicum uçucu yağlarının temel bileşenleri sırasıyla, 1,8-cineole (%63.7), carvacrol (%64.5) ve cinnamaldehyde (%80.9) olarak belirlenmiştir. BC membranlar, %1-12 (v/v) uçucu yağ içeren çözeltiler ile temas ettirilmiş ve daha sonra disk difüzyon tekniği ile Staphylococcus aerus (ATCC 25923, Gram pozitif) ve Pseudomonas aeruginosa (ATCC 27853, Gram negatif) bakterilerine karşı etkinlikleri araştırılmıştır. Sonuçlar, L. nobilis uçucu yağı yüklenmiş BC membranların S. aerus'a karşı etkin olmadığını, P. aeruginosa'ya karşı ise ancak %8'in üzerindeki derişimlerde zayıf etki göstererek yarıçapı 2 mm'ye varan inhibisyon bölgeleri oluşturabildiğini göstermiştir. Öte yandan, Oregano ve C. zeylanicum uçucu yağları ile yüklenmiş biyofilmler yarıçapı sırasıyla 13 mm ve 16 mm'ye varan inhibisyon bölgeleri oluşturarak her iki patojene karşı da yüksek etkinlik göstermişlerdir.  

Fabrication of Antibacterial Cellulosic Films Using Essential Oils

___

  • Petersen, N. ve Gatenholm, N. (2011). Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl. Microbiol. Biotechnol., 91(3), 1277-1286.
  • Aydın, Y.A. ve Deveci Aksoy, N. (2014). Isolation and Characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A. Appl. Microbiol. Biotechnol., 98(3), 1065-1075.
  • Maneerung, T., Tokura, S. ve Rujiravanit, R. (2008). Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr. Polym., 72 (1), 43-51.
  • Li, S.M., Jia, N., Ma, M.G., Zhang, Z., Liu, Q.H. ve Sun, R.C. (2011). Cellulose–silver nanocomposites: Microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym., 86 (2), 441-447.
  • Wei, B., Yang, G. ve Hong, F. (2011). Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr. Polym., 84(1), 533-538.
  • Gromovykh T.I., Sadykova, V.S., Lutcenko, S.V., Dmitrenok, A.S., Feldman, N.B., Danilchuk, T.N. ve Kashirin, V.V. (2017). Bacterial cellulose Synthesized by Gluconacetobacter hansenii for medical applications. Appl. Biochem. Microbiol., 53(1), 60-67.
  • Dadalıoğlu, I. ve Evrendilek, G.A. (2004). Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), Bay Laurel (Laurus nobilis), Spanish Lavender (Lavandula stoechas L.), and Fennel (Foeniculum vulgare) on common foodborne pathogens. J. Agric. Food Chem., 52(26), 8255-8260.
  • Sukhtezari, S., Almasi, H., Pirsa, S., Zandi, M. ve Pirouzifard M.K. (2017). Development of bacterial cellulose based slow-release active films by incorporation of Scrophularia striata Boiss. extract. Carbohydr. Polym., 156, 340–350.
  • Schramm, M. ve Hestrin, S. (1954). Synthesis of cellulose by Acetobacter xylinum. 1: Micromethod for the determination of celluloses. Biochem. J., 56(1), 163-166.
  • Li, Y.Q., Kong, D.X. ve Wu, H. (2013). Analysis and evaluation of essential oil components of cinnamon barks using GC–MS and FTIR spectroscopy. Ind. Crops Prod., 41, 269-278.
  • Seow, Y.X., Yeo, C.R., Chung, H.L. ve Yuk, H.G. (2014). Plant essential oils as active antimicrobial agents. Crit. Rev. Food Sci. Nutr., 54(5), 625-644.
  • Müller-Riebau, F., Berger, B. ve Yegen, O. (1995). Chemical composition and fungitoxic properties to phytopathogenic fungi of essential oils of selected aromatic plants growing wild in Turkey. J Agric. Food Chem., 43(8), 2262-2266.
  • Shan, B., Cai, Y.Z., Brooks, J.D. ve Corke, H. (2007). Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): Activity against foodborne pathogenic bacteria. J. Agric. Food Chem., 55(14), 5484-5490.
  • Jiang, Z., Jiang, H. ve Xie, P. (2013). Antifungal activities against Sclerotinia sclerotiorum by Cinnamomum cassia oil and its main components. J. Essent. Oil Res., 25(6), 444-451.
  • Khattak WA, Khan T., Ul-Islam M., Wahid F., Park J.K. (2015). Production, characterization and physico-mechanical properties of bacterial cellulose from industrial wastes. J. Polym. Environ., 23(1), 45-53.
  • Walentowska, J. ve Foksowicz-Flaczyk, J., 2013. Thyme essential oil for antimicrobial protection of natural textiles. Int. Biodeter. Biodegr., 84, 407-411.
  • Peng, Y. ve Li, Y. (2014). Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocolloid., 36, 287-293.